Understanding how vegetation growth responds to climate change is a critical requirement for projecting future ecosystem dynamics. Parts of North America (NA) have experienced a spring cooling trend over the last three decades, but little is known about the response of vegetation growth to this change. Using observed climate data and satellite-derived Normalized Difference Vegetation Index (NDVI) data from 1982 to 2006, we investigated changes in spring (April-May) temperature trends and their impact on vegetation growth in NA. A piecewise linear regression approach shows that the trend in spring temperature is not continuous through the 25-year period. In the northwestern region of NA, spring temperature increased until the late 1980s or early 1990s, and stalled or decreased afterwards. In response, a spring vegetation greening trend, which was evident in this region during the 1980s, stalled or reversed recently. Conversely, an opposite phenomenon occurred in the northeastern region of NA due to different spring temperature trends. Additionally, the trends of summer vegetation growth vary between the periods before and after the turning point (TP) of spring temperature trends. This change cannot be fully explained by summer drought stress change alone and is partly explained by changes in the trends of spring temperature as well as those of summer temperature. As reported in previous studies, summer vegetation browning trends have occurred in the northwestern region of NA since the early 1990s, which is consistent with the spring and summer cooling trends in this region during this period.
UV irradiation is demonstrated to initiate dopamine polymerization and deposition on different surfaces under both acidic and basic pH. The observed acceleration of the dopamine polymerization is explained by the UV‐induced formation of reactive oxygen species that trigger dopamine polymerization. The UV‐induced dopamine polymerization leads to a better control over polydopamine deposition and formation of functional polydopamine micropatterns.
Marine biofouling is a longstanding problem because of the constant challenges placed by various fouling species and increasingly restricted environmental regulations for antifouling coatings. Novel nonbiocidal strategies to control biofouling will necessitate a multifunctional approach to coating design. Here we show that slippery liquid-infused porous surfaces (SLIPSs) provide another possible strategy to obtaining promising antifouling coatings. Microporous butyl methacrylate-ethylene dimethacrylate (BMA-EDMA) surfaces are prepared via UV-initiated free-radical polymerization. Subsequent infusion of fluorocarbon lubricants (Krytox103, Krytox100, and Fluorinert FC-70) into the porous microtexture results in liquid-repellent slippery surfaces. To study the interaction with marine fouling organisms, settlement of zoospores of the alga Ulva linza and cypris larvae of the barnacle Balanus amphitrite is tested in laboratory assays. BMA-EDMA surfaces infused with Krytox103 and Krytox100 exhibit remarkable inhibition of settlement (attachment) of both spores and cyprids to a level comparable to that of a poly(ethylene glycol) (PEG)-terminated self-assembled monolayer. In addition, the adhesion strength of sporelings (young plants) of U. linza is reduced for BMA-EDMA surfaces infused with Krytox103 and Krytox100 compared to pristine (noninfused) BMA-EDMA and BMA-EDMA infused with Fluorinert FC-70. Immersion tests suggest a correlation between the stability of slippery coatings in artificial seawater and fouling resistance efficacy. The results indicate great potential for the application of this concept in fouling-resistant marine coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.