The Cpx envelope stress response mediates adaptation to stresses that affect protein folding within the envelope of Gram-negative bacteria. Recent transcriptome analyses revealed that the Cpx response impacts genes that affect multiple cellular functions predominantly associated with the cytoplasmic membrane. In this study, we examined the connection between the Cpx response and the respiratory complexes NADH dehydrogenase I and cytochrome bo 3 in enteropathogenic Escherichia coli. We found that the Cpx response directly represses the transcription of the nuo and cyo operons and that Cpx-mediated repression of these complexes confers adaptation to stresses that compromise envelope integrity. Furthermore, we found that the activity of the aerobic electron transport chain is reduced in E. coli lacking a functional Cpx response despite no change in the transcription of either the nuo or the cyo operon. Finally, we show that expression of NADH dehydrogenase I and cytochrome bo 3 contributes to basal Cpx pathway activity and that overproduction of individual subunits can influence pathway activation. Our results demonstrate that the Cpx response gauges and adjusts the expression, and possibly the function, of inner membrane protein complexes to enable adaptation to envelope stress.IMPORTANCE Bacterial stress responses allow microbes to survive environmental transitions and conditions, such as those encountered during infection and colonization, that would otherwise kill them. Enteric microbes that inhabit or infect the gut are exposed to a plethora of stresses, including changes in pH, nutrient composition, and the presence of other bacteria and toxic compounds. Bacteria detect and adapt to many of these conditions by using envelope stress responses that measure the presence of stressors in the outermost compartment of the bacterium by monitoring its physiology. The Cpx envelope stress response plays a role in antibiotic resistance and host colonization, and we have shown that it regulates many functions at the bacterial inner membrane. In this report, we describe a novel role for the Cpx response in sensing and controlling the expression of large, multiprotein respiratory complexes at the cytoplasmic membrane of Escherichia coli. The significance of our research is that it will increase our understanding of how these stress responses are involved in antibiotic resistance and the mechanisms used by bacteria to colonize the gut.KEYWORDS envelope stress response, NADH dehydrogenase I, cytochrome bo 3 , membrane protein biogenesis, Cpx envelope stress response, NADH dehydrogenase, cytochrome oxidase, inner membrane, protein complex, protein folding, protein localization, respiration, two-component regulatory systems G ram-negative bacteria are characterized by the structure of their cell envelope, which consists of the inner membrane (IM), the outer membrane, and the peptidoglycan layer within the periplasmic space. Of these, the IM contains the greatest protein diversity (1). Proteins that reside within the IM...
BackgroundFor metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs) in tandem.ResultsThrough a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB) production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation.ConclusionsThe transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.
DNA double-strand breaks (DSBs) are one of the most lethal forms of DNA damage that is not efficiently repaired in prokaryotes. Certain microorganisms can handle chromosomal DSBs using the error-prone non-homologous end joining (NHEJ) system and ultimately cause genome mutagenesis. Here, we demonstrated that Enterobacteria phage T4 DNA ligase alone is capable of mediating in vivo chromosome DSBs repair in Escherichia coli. The ligation efficiency of DSBs with T4 DNA ligase is one order of magnitude higher than the NHEJ system from Mycobacterium tuberculosis . This process introduces chromosome DNA excision with different sizes, which can be manipulated by regulating the activity of host-exonuclease RecBCD. The DNA deletion length reduced either by inactivating recB or expressing the RecBCD inhibitor Gam protein from λ phage. Furthermore, we also found single nucleotide substitutions at the DNA junction, suggesting that T4 DNA ligase, as a single component non-homologous end joining system, has great potential in genome mutagenesis, genome reduction and genome editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.