Advanced glycation end products (AGEs) delay spontaneous apoptosis of monocytes and contribute to the development of inflammatory responses. However, the mechanism by which AGEs affect monocyte apoptosis is unclear. We studied the role of microRNA-214 (miR-214) and its target gene in AGE-induced monocytic apoptosis delay. Using microRNA (miRNA) microarray and stem-loop, quantitative RT-PCR assay, we studied genome-wide miRNA expression in THP-1 cells treated with or without AGEs. Significant upregulation of miR-214 was consistently observed in THP-1 and human monocytes treated with various AGEs, and AGE-induced monocytic miR-214 upregulation was likely through activation of receptor for AGEs. A striking increase in miR-214 was also detected in monocytes from patients with chronic renal failure. Luciferase reporter assay showed that miR-214 specifically binds to the phosphatase and tensin homolog (PTEN) mRNA 3′-untranslated region, implicating PTEN as a target gene of miR-214. PTEN expression is inversely correlated with miR-214 level in monocytes. Compared with normal monocytes, AGE-treated monocytes and monocytes from chronic renal failure patients exhibited lower PTEN levels and delayed apoptosis. Overexpression of pre–miR-214 led to impaired PTEN expression and delayed apoptosis of THP-1 cells, whereas knockdown of miR-214 level largely abolished AGE-induced cell survival. Our findings define a new role for miR-214–targeting PTEN in AGE-induced monocyte survival.
Sugars are necessary for plant growth and fruit development. Cucumber (Cucumis sativus L.) transports sugars, mainly raffinose family oligosaccharides (RFOs), in the vascular bundle. As the dominant sugars in cucumber fruit, glucose and fructose are derived from sucrose, which is the product of RFO hydrolysis by α-galactosidases. Here, we characterized the cucumber alkaline α-galactosidase 2 (CsAGA2) gene and found that CsAGA2 has undergone human selection during cucumber domestication. Further experiments showed that the expression of CsAGA2 increases gradually during fruit development, especially in fruit vasculature. In CsAGA2-RNA interference (RNAi) lines, fruit growth was delayed because of lower hexose production in the peduncle and fruit main vascular bundle (MVB). In contrast, CsAGA2-overexpressing (OE) plants displayed bigger fruits. Functional enrichment analysis of transcriptional data indicated that genes related to sugar metabolism, cell wall metabolism, and hormone signaling were significantly downregulated in the peduncle and fruit MVBs of CsAGA2-RNAi plants. Moreover, downregulation of CsAGA2 also caused negative feedback regulation on source leaves, which was shown by reduced photosynthetic efficiency, fewer plasmodesmata at the surface between mesophyll cell and intermediary cell or between intermediary cell and sieve element, and downregulated gene expression and enzyme activities related to phloem loading, as well as decreased sugar production and exportation from leaves and petioles. The opposite trend was observed in CsAGA2-OE lines. Overall, we conclude that CsAGA2 is essential for cucumber fruit set and development through mediation of sugar communication between sink strength and source activity.
Summary Cold stress affects crop growth and productivity worldwide. Understanding the genetic basis of cold tolerance in germplasms is critical for crop improvement. Plants can coordinate environmental stimuli of light and temperature to regulate cold tolerance. However, it remains unknown which gene in germplasms could have such function. Here, we utilized genome‐wide association study (GWAS) to investigate the cold tolerance of wild and cultivated tomato accessions and discovered that increased cold tolerance is accompanied with tomato domestication. We further identified a 27‐bp InDel in the promoter of the CONSTANS‐like transcription factor (TF) SlBBX31 is significantly linked with cold tolerance. Coincidentally, a key regulator of light signalling, SlHY5, can directly bind to the SlBBX31 promoter to activate SlBBX31 transcription while the 27‐bp InDel can prevent S1HY5 from transactivating SlBBX31. Parallel to these findings, we observed that the loss of function of SlBBX31 results in impaired tomato cold tolerance. SlBBX31 can also modulate the cold‐induced expression of several ERF TFs including CBF2 and DREBs. Therefore, our study has uncovered that SlBBX31 is possibly selected during tomato domestication for cold tolerance regulation, providing valuable insights for the development of hardy tomato varieties.
Nasopharyngeal cancer is a rare cancer type, but with a low five-year survival rate. Dysregulation of pyrroline-5-carboxylate reductase 1 (PYCR1) and microRNA hsa-miR-150-5p is involved in the development of various cancers. However, the molecular mechanism of the hsa-miR-150-5p-PYCR1 axis in nasopharyngeal cancer remains unclear. To identify the mechanism of the hsa-miR-150-5p-PYCR1 axis, the expression of hsa-miR-150-5p and PYCR1 in nasopharyngeal cancer tissues and cells was first measured by reverse transcription quantitative polymerase chain reaction. The luciferase and RNA pull-down assays were used to confirm the interaction between hsa-miR-150-5p and PYCR1. The overexpression of hsa-miR-150-5p and PYCR1 was detected by cell viability, proliferation, western blotting, migration, and invasion in nasopharyngeal cancer cells. The expression levels of hsa-miR-150-5p was reduced in the nasopharyngeal cancer tissues and cells and were negatively correlated with the PYCR1 levels. The upregulation of hsa-miR-150-5p significantly repressed cell growth and promoted apoptosis. However, the upregulation of PYCR1 expression significantly promoted nasopharyngeal carcinogenesis, which could abolish the inhibitory effect of hsa-miR-150-5p. In conclusion, we clarified that hsa-miR-150-5p attenuated nasopharyngeal carcinogenesis by reducing the PYCR1 expression levels. This provides a new perspective of nasopharyngeal cancer involving both hsa-miR-150-5p and PYCR1 for the treatment of nasopharyngeal cancer.
Background Long-term domestication and intensive breeding of crop plants aim to establish traits desirable for human needs, and characteristics related to yield, disease resistance, and postharvest storage have traditionally received considerable attention. These processes have led also to negative consequences, as is the case of loss of variants controlling fruit quality, for instance in tomato. Tomato fruit quality is directly associated to metabolite content profiles; however, a full understanding of the genetics affecting metabolite content during tomato domestication and improvement has not been reached due to limitations of the single detection methods previously employed. Here, we aim to reach a broad understanding of changes in metabolite content using a genome-wide association study (GWAS) with eigenvector decomposition (EigenGWAS) on tomato accessions. Results An EigenGWAS was performed on 331 tomato accessions using the first eigenvector generated from the genomic data as a “phenotype” to understand the changes in fruit metabolite content during breeding. Two independent gene sets were identified that affected fruit metabolites during domestication and improvement in consumer-preferred tomatoes. Furthermore, 57 candidate genes related to polyphenol and polyamine biosynthesis were discovered, and a major candidate gene chlorogenate: glucarate caffeoyltransferase (SlCGT) was identified, which affected the quality and diseases resistance of tomato fruit, revealing the domestication mechanism of polyphenols. Conclusions We identified gene sets that contributed to consumer liking during domestication and improvement of tomato. Our study reports novel evidence of selective sweeps and key metabolites controlled by multiple genes, increasing our understanding of the mechanisms of metabolites variation during those processes. It also supports a polygenic selection model for the application of tomato breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.