To control the fermentation process of yeast-Chinese steamed bread (CSB), the volatile compounds and odor profiles of yeast-CSBs during fermentation were comprehensively investigated by sensory evaluation, gas chromatography−mass spectrometry, gas chromatography−olfactometry (GC−O), and odor activity value (OAV). Eight sensory attributes were established, and quantitative descriptive analysis results showed that CF1303-CSB had intense sweet and sweet aftertaste attributes, CF1318-CSB was characterized by milky, wheaty, and yeasty attributes, while CL10138-CSB presented distinct sour, winy, and floury attributes. A total of 41 key aroma-active compounds were detected, and phenylethyl alcohol was the most potent aroma compound with a flavor dilution (FD) of 1024. CF1303-CSB, CF1318-CSB, and CL10138-CSB contained 24, 22, and 21 key aroma compounds, respectively, based on the OAV. These key aroma compounds can be used as the potential markers to monitor the yeast-CSBs during the fermentation process. Five compounds, including β-myrcene, 2-phenoxyethanol, methyl cinnamate, guaiacol, and o-cresol, were first identified in CSB. These results provide theoretical basis for processing and quality control of yeast-CSBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.