A hospital-based survey of Kawasaki disease was performed in all 45 hospitals with in-patient beds in Beijing during the 5-year period from 2000 through 2004. A total of 1107 patients were enrolled, with an annual incidence varying from 40.9 to 55.1 per 100,000 children <5 years of age. The incidence of coronary complications was 20.6% in the acute stage, and 6.9% in the 1-2 month follow-up.
BackgroundPrimary or acquired resistance to cetuximab often occurs during targeted therapy in metastatic colorectal cancer (mCRC) patients. In many cancers, the key role of the long noncoding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) in anticancer drug resistance has been confirmed. Emerging evidence has shown that specific exosomal lncRNAs may serve as meaningful biomarkers. In this study, we hypothesize that exosomal UCA1 might predict the response to cetuximab in CRC patients.MethodsFirst, acquired cetuximab-resistant cell lines were generated, and UCA1 expressions in these cells and their exosomes were compared. We also systematically evaluate the stability of exosomal UCA1. Thereafter, the predictive value of exosomal UCA1 in CRC patients treated with cetuximab was evaluated. Finally, through cell apoptosis assays and immunofluorescence staining, we analyzed the role of UCA1-containing exosomes in conferring cetuximab resistance.ResultsUCA1 expression was markedly higher in cetuximab-resistant cancer cells and their exosomes. Exosomal UCA1 was shown to be detectable and stable in serum from CRC patients. In addition, circulating UCA1-containing exosomes could predict the clinical outcome of cetuximab therapy in CRC patients, and UCA1 expression was considerably higher in the progressive disease/stable disease patients than in the partial response/complete response patients. Furthermore, exosomes derived from cetuximab-resistant cells could alter UCA1 expression and transmit cetuximab resistance to sensitive cells.ConclusionsWe discovered a novel role of UCA1-containing exosomes, showed their capability to transmit drug resistance and investigated their potential clinical use in predicting cetuximab resistance.
Background/Aims: Although photodynamic therapy (PDT) can relieve esophageal obstruction and prolong survival time of patients with esophageal cancer, it can induce nuclear factor-kappa B (NF-κB) activation in many cancers, which plays a negative role in PDT. Dihydroartemisinin (DHA), the most potent artemisinin derivative, can enhance the effect of PDT on esophageal cancer cells. However, the mechanism is still unclear. Methods: We generated stable cell lines expressing the super-repressor form of the NF-κB inhibitor IκBα and cell lines with lentivirus vector-mediated silencing of the HIF-1α gene. Esophageal xenograft tumors were created by subcutaneous injection of Eca109 cells into BALB/c nude mice. Four treatment groups were analyzed: a control group, photosensitizer alone group, light alone group, and PDT group. NF-κB expression was detected by an electrophoretic mobility shift assay, hypoxia-inducible factor α (HIF-1α) and vascular endothelial growth factor (VEGF) by real-time PCR, NF-κB, HIF-1α, and VEGF protein by western blot, and Ki-67, HIF-1α, VEGF, and NF-κB protein by immunohistochemistry. Results: PDT increased NF-κB activity and the gene expression of HIF-1α and VEGF in vitro and in vivo. In contrast, the DHA groups, particularly the combined DHA and PDT treatment group, abolished the effect. The combined treatment significantly inhibited tumor growth in vitro and in vivo. NF-κB activity and HIF-1α expression were also reduced in the stable IκBα expression group, whereas the former showed no change in HIF-1α-silenced cells. Conclusion: DHA might increase the sensitivity of esophageal cancer cells to PDT by inhibiting the NF-κB/HIF-1α/VEGF pathway.
Kurarinone, a flavonoid isolated from Sophora flavescens Aiton, has been reported to have significant antitumor activity. However, the cytotoxic activity of kurarinone against non-small cell lung cancer (NSCLC) cells is still under explored. In our study, we have evaluated the inhibitory effects of kurarinone on the growth of NSCLC both in vivo and in vitro as well as the molecular mechanisms underlying kurarinone-induced A549 cell apoptosis. The results showed that kurarinone effectively inhibited the proliferation of A549 cells with little toxic effects on human bronchial epithelial cell line BEAS-2B. FASC examination and Hoechst 33258 staining assay showed that kurarinone dose-dependently provoked A549 cells apoptosis. Mechanistically, kurarinone significantly decreased the ratio of Bcl-2/Bax, thereby causing the activation of caspase 9 and caspase 3, and reduced the expression of Grp78, which led to relieve the inhibition of caspase-12 and caspase-7, as well as suppressing the activity of AKT. Meanwhile, modeling results from the Surflex-Dock program suggested that residue Ser473 of Akt is a potential binding site for kurarinone. In vivo, kurarinone inhibited the growth of A549 xenograft mouse models without apparent signs of toxicity. Our study indicated that kurarinone has the potential effects of anti-NSCLC, implemented through activating mitochondria apoptosis signaling pathway, as well as repressing the activity of endoplasmic reticulum pathway and AKT in A549 cells.
EPS8 was first identified as a tyrosine kinase substrate, that plays a role in EGFR-mediated mitogenic signaling. Recent research has shown that EPS8 is overexpressed in most types of cancer, for example breast cancer, colon cancer, cervical cancer and even hematologic malignancies. EPS8 is involved in many signaling pathways related to tumorigenesis, proliferation, migration and metastasis, and is a biomarker for poor prognosis of cancer patients. This review aims to provide a comprehensive picture of the role of EPS8 in cellular processes and its significance to tumorigenesis. Furthermore, this review focuses on the potential role of EPS8 as a therapeutic cancer target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.