AlSi10Mg alloy has been widely used in selective laser melting (SLM). However, the formation of metallurgical defects in this material during SLM process has not been studied sufficiently. In this work, different laser parameters were adopted to fabricate the specimens. The effects of volumetric energy density (VED) on the metallurgical defect, densification, phase composition and mechanical property were also comprehensively analyzed. At low VED of 37.39[Formula: see text]J/mm3, a nearly full dense sample with density of 2.602[Formula: see text]g/cm3 can be printed. The sample with maximal tensile strength of 475[Formula: see text]MPa can be printed. While with the increase of VED, the ultimate tensile strength decreases due to the formation of micro-pores. The formation mechanisms of micro-pores including gas pores and keyhole-induced pores were disclosed from the angle of alloy smelting. Better understanding of the influence mechanisms of the laser parameters on the formation of metallurgical defects is beneficial for the production of high performance SLM parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.