Carbon nitride materials require high temperatures (>500 °C) for their preparation, which entails substantial energy consumption. Furthermore, the high reaction temperature limits the materials’ processability and the control over their elemental composition. Therefore, alternative synthetic pathways that operate under milder conditions are still very much sought after. In this work, we prepared semiconductive carbon nitride (CN) polymers at low temperatures (300 °C) by carrying out the thermal condensation of triaminopyrimidine and acetoguanamine under a N2 atmosphere. These molecules are isomers: they display the same chemical formula but a different spatial distribution of their elements. X-ray photoelectron spectroscopy (XPS) experiments and electrochemical and photophysical characterization confirm that the initial spatial organization strongly determines the chemical composition and electronic structure of the materials, which, thanks to the preservation of functional groups in their surface, display excellent processability in liquid media.
The design of efficient self-standing hybrid systems for water purification that combines good adsorption properties with high photodegradation ability is highly challenging owing to the difficulty in simultaneously controlling the band structure and porosity of a semiconductor while maintaining its self-standing nature. Here, we report the synthesis of carbon-rich carbon nitride self-standing filters from supramolecular hydrogels composed of melamine and cyanobenzoic acid. The influence of the chemical structure on the properties of the hydrogels and the final films was studied by tuning parameters such as monomer nature, molar ratio, and pyrolysis temperature. Thanks to their ability to combine the adsorption and photodegradation of organic pollutants, the prepared self-standing films showed remarkable activity and stability in flow conditions (> 95 % efficiency after 10 consecutive cycles). Additionally, the photocatalytic activity of the films was assessed in the powder form for the hydrogen evolution reaction and photocurrent generation in a photoelectrochemical cell. The reported work opens opportunities for the controlled synthesis of multifunctional filters for water purification and other energy-related and sustainable technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.