Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be trained, it makes facial variation such as pose, illumination, and disguise difficult to be predicted. To overcome this problem, this paper proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and conveniently. Besides, it can generate samples such as disguise, expression, and mixed variation. Second, it uses transfer learning and introduces a well-trained deep convolutional neural network (DCNN) model and then selects some expanding samples to fine-tune the DCNN model. Third, the fine-tuned model is used to implement experiment. Experimental results on AR face database, Extend Yale B face database, FERET face database, and LFW database demonstrate that TDL achieves the state-of-the-art performance in SSPP FR.
Because of the lack of discriminative face representations and scarcity of labeled training data, facial beauty prediction (FBP), which aims at assessing facial attractiveness automatically, has become a challenging pattern recognition problem. Inspired by recent promising work on fine-grained image classification using the multiscale architecture to extend the diversity of deep features, BeautyNet for unconstrained facial beauty prediction is proposed in this paper. Firstly, a multiscale network is adopted to improve the discriminative of face features. Secondly, to alleviate the computational burden of the multiscale architecture, MFM (max-feature-map) is utilized as an activation function which can not only lighten the network and speed network convergence but also benefit the performance. Finally, transfer learning strategy is introduced here to mitigate the overfitting phenomenon which is caused by the scarcity of labeled facial beauty samples and improves the proposed BeautyNet’s performance. Extensive experiments performed on LSFBD demonstrate that the proposed scheme outperforms the state-of-the-art methods, which can achieve 67.48% classification accuracy.
Facial beauty prediction (FBP) has become an emerging area in the field of artificial intelligence. However, the lacks of data and accurate face representation hinder the development of FBP. Multi-task transfer learning can effectively avoid over-fitting, and utilize auxiliary information of related tasks to optimize the main task. In this paper, we present a network named Multi-input Multi-task Beauty Network (2M BeautyNet) and use transfer learning to predict facial beauty. In the experiment, beauty prediction is the main task, and gender recognition is the auxiliary. For multi-task training, we employ multitask loss weights automatic learning strategy to improve the performance of FBP. Finally, we replace the softmax classifier with a random forest. We conduct experiments on the Large Scale Facial Beauty Database (LSFBD) and SCUT-FBP5500 database. Results show that our method has achieved good results on LSFBD, the accuracy of FBP is up to 68.23%. Our 2M BeautyNet structure is suitable for multiple inputs of different databases. INDEX TERMS Facial beauty prediction, multi-task transfer learning, multi-input multi-output network, multi-task loss weight automatic learning strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.