Because of the lack of discriminative face representations and scarcity of labeled training data, facial beauty prediction (FBP), which aims at assessing facial attractiveness automatically, has become a challenging pattern recognition problem. Inspired by recent promising work on fine-grained image classification using the multiscale architecture to extend the diversity of deep features, BeautyNet for unconstrained facial beauty prediction is proposed in this paper. Firstly, a multiscale network is adopted to improve the discriminative of face features. Secondly, to alleviate the computational burden of the multiscale architecture, MFM (max-feature-map) is utilized as an activation function which can not only lighten the network and speed network convergence but also benefit the performance. Finally, transfer learning strategy is introduced here to mitigate the overfitting phenomenon which is caused by the scarcity of labeled facial beauty samples and improves the proposed BeautyNet’s performance. Extensive experiments performed on LSFBD demonstrate that the proposed scheme outperforms the state-of-the-art methods, which can achieve 67.48% classification accuracy.
Since Synthetic Aperture Radar (SAR) targets are full of coherent speckle noise, the traditional deep learning models are difficult to effectively extract key features of the targets and share high computational complexity. To solve the problem, an effective lightweight Convolutional Neural Network (CNN) model incorporating transfer learning is proposed for better handling SAR targets recognition tasks. In this work, firstly we propose the Atrous-Inception module, which combines both atrous convolution and inception module to obtain rich global receptive fields, while strictly controlling the parameter amount and realizing lightweight network architecture. Secondly, the transfer learning strategy is used to effectively transfer the prior knowledge of the optical, non-optical, hybrid optical and non-optical domains to the SAR target recognition tasks, thereby improving the model's recognition performance on small sample SAR target datasets. Finally, the model constructed in this paper is verified to be 97.97% on ten types of MSTAR datasets under standard operating conditions, reaching a mainstream target recognition rate. Meanwhile, the method presented in this paper shows strong robustness and generalization performance on a small number of randomly sampled SAR target datasets.
Facial beauty plays an important role in many fields today, such as digital entertainment, facial beautification surgery and etc. However, the facial beauty prediction task has the challenges of insufficient training datasets, low performance of traditional methods, and rarely takes advantage of the feature learning of Convolutional Neural Networks. In this paper, a transfer learning based CNN method that integrates multiple channel features is utilized for Asian female facial beauty prediction tasks. Firstly, a Large-Scale Asian Female Beauty Dataset (LSAFBD) with a more reasonable distribution has been established. Secondly, in order to improve CNN's self-learning ability of facial beauty prediction task, an effective CNN using a novel Softmax-MSE loss function and a double activation layer has been proposed. Then, a data augmentation method and transfer learning strategy were also utilized to mitigate the impact of insufficient data on proposed CNN performance. Finally, a multi-channel feature fusion method was explored to further optimize the proposed CNN model. Experimental results show that the proposed method is superior to traditional learning method combating the Asian female FBP task. Compared with other state-of-the-art CNN models, the proposed CNN model can improve the rank-1 recognition rate from 60.40% to 64.85%, and the pearson correlation coefficient from 0.8594 to 0.8829 on the LSAFBD and obtained 0.9200 regression prediction results on the SCUT dataset. INDEX TERMS Convolutional neural network (CNN), double activation layer, facial beauty prediction (FBP), feature fusion, softmax-MSE loss, transfer learning.
Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR), most algorithms of which have employed and relied on sufficient training samples to receive a strong discriminative classification model, has remained a challenging task in recent years, among which the challenge of SAR data acquisition and further insight into the intuitive features of SAR images are the main concerns. In this paper, a deep transferred multi-level feature fusion attention network with dual optimized loss, called a multi-level feature attention Synthetic Aperture Radar network (MFFA-SARNET), is proposed to settle the problem of small samples in SAR ATR tasks. Firstly, a multi-level feature attention (MFFA) network is established to learn more discriminative features from SAR images with a fusion method, followed by alleviating the impact of background features on images with the following attention module that focuses more on the target features. Secondly, a novel dual optimized loss is incorporated to further optimize the classification network, which enhances the robust and discriminative learning power of features. Thirdly, transfer learning is utilized to validate the variances and small-sample classification tasks. Extensive experiments conducted on a public database with three different configurations consistently demonstrate the effectiveness of our proposed network, and the significant improvements yielded to surpass those of the state-of-the-art methods under small-sample conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.