Complex coacervate core micelles (C3Ms) from cationic poly(N-methyl-2-vinyl-pyridinium iodide)-b-poly(ethylene oxide) (P2MVP(41)-b-PEO(205)) and anionic iron coordination polymers are investigated in the present work. Micelle formation is studied by light scattering for both Fe(II)- and Fe(III)-containing C3Ms. At the stoichiometric charge ratio, both Fe(II)-C3Ms and Fe(III)-C3Ms are stable for at least 1 week at room temperature. Excess of iron coordination polymers has almost no effect on the formed Fe(II)-C3Ms and Fe(III)-C3Ms, whereas excess of P2MVP(41)-b-PEO(205) copolymers in the solution can dissociate the formed micelles. Upon increasing salt concentration, the scattering intensity decreases. This decrease is due to both a decrease in the number of micelles (or an increase in CMC) and a decrease in aggregation number. The salt dependence of the CMC and the aggregation number is explained using a scaling argument for C3M formation. Compared with Fe(II)-C3Ms, Fe(III)-C3Ms have a lower CMC and a higher stability against dissociation by added salt.
This article presents a facile strategy to combine Eu(3+) and Gd(3+) ions into coacervate core micelles in a controlled way with a statistical distribution of the ions. Consequently, the formed micelles show a high tunability between luminescence and relaxivity. These highly stable micelles present great potential for new materials, e.g. as bimodal imaging probes.
The immobilization of bovine serum albumins (BSA) onto cationic spherical polyelectrolyte brushes (SPB) consisting of a solid polystyrene (PS) core and a densely grafted poly(2-aminoethyl methacrylate hydrochloride) (PAEMH) shell was studied by small-angle X-ray scattering (SAXS). The observed dynamics of adsorption of BSA onto SPB by time-resolved SAXS can be divided into two stages. In the first stage (tens of milliseconds), the added proteins as in-between bridge instantaneously caused the aggregation of SPB. Then BSA penetrated into the brush layer driven by electrostatic attractions, and reached equilibrium in the second stage (tens of seconds). The amount of BSA immobilized onto brush layer reached the maximum when pH was increased to about 6.1 and BSA concentration to 10 g/L. The cationic SPB were confirmed to provide stronger adsorption capacity for BSA compared to anionic ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.