Two phosphate-and potassium-solubilizing strains (KNP413 and KNP414) were isolated from the soil of Tianmu Mountain, Zhejiang Province (China) and they were phenotypically and phylogenetically characterized. Both isolates effectively dissolved mineral phosphate and potassium, while strain KNP414 showed higher dissolution capacity even than Bacillus mucilaginosus AS1.153, the inoculant of potassium fertilizer widely used in China. When grown on Aleksandrov medium, both strains were rod-shaped spore-formers with a large capsule, and they formed slimy and translucent colonies. The DNA G+C contents were 57.7 mol% for strain KNP413 and 56.1 mol% for strain KNP414. Strain KNP413 shared a 16S rRNA gene sequence similarity of more than 99.1% with strain KNP414 and Bacillus mucilaginosus strains HSCC 1605 and YNUC0001, and a 94.6% similarity with Bacillus mucilaginosus VKM B-1480D, the type strain of Bacillus mucilaginosus. Strains KNP413 and KNP414 together with other Bacillus mucilaginosus were clustered with Paenibacillus strains in a group. The use of a specific PCR primer PAEN515F designed for differentiating the genus Paenibacillus from other members of the Bacillaceae showed that strains KNP413 and KNP414 had the same amplified 16S rRNA gene fragment (0.9-kb) as members of the genus Paenibacillus. In conclusion, phosphate-and potassium-solubilizing strains KNP413 and KNP414 should be integrated into the same species different from strain VKM B-1480D and they might be transferred to the genus of Paenibacillus, i.e. Paenibacillus mucilaginosus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.