Ventilation and air conditioning systems are emerging as the major energy consumers in low energy buildings. The objective of this paper is to present new methodology for assessment of Air Handling Units (AHUs) taking into account the variations of reference temperature. The methodology using the concept of coenthalpy, developed for heat exchangers and published by the authors previously has been used. Four AHUs that comprise energy transfer devices, such as: Water-to-Air Heater (WAH), Heat Recovery Exchanger (HRE) and Heat Pump (HP) have been investigated. Thermodynamic parameters including Coefficient of Performance (COP), universal and functional exergy efficiencies have been used to compare AHUs and to calculate the exergy destruction in AHU components at variable environment temperature-30°C…+10°C. The results of this study show that using HRE the COP and exergy efficiencies are significantly better compared with AHU without HRE. Using the HRE of higher effectiveness, the thermodynamic indicators can be improved considerably. The study shows that AHUs equipped with HP with advanced control method and HRE are more advantageous compared with other investigated AHUs. The presented methodology could have practical application for evaluating of energy and exergy efficiency of AHUs at different reference temperatures when designing HVAC systems and implementing optimum control methods.
Flow-mixing is common in technological processes, and both ejectors and turbofans can produce an interaction between flows with different energy potentials. Ejectors have been extensively used, and their analytical models have been widely presented. To the best of the authors’ knowledge, there is a lack of studies exploring the efficiencies of turbofans. The goal of this paper is to compare thermodynamic processes in these devices. Their efficiencies are compared in terms of compression and entrainment ratios. A comprehensive one-dimensional subsonic thermodynamic models of the ejector and turbofan are presented. The quantitative indices are obtained for the same initial conditions expressed as the ratio of differences in enthalpies for ideal compression and ideal expansion. When initial conditions are equal to the numeric value of the combination of the isentropic efficiency of the evaluated components (numerical case 0.16), both devices have the same efficiencies; at lower initial conditions (numerical case 0.10), a turbofan’s entrainment ratio is 1.5 times and compression efficiency 1.25 times higher; at higher values of initial conditions (numerical case 0.28), the ejector is more efficient. Such distinctive characteristics of turbofans and the nature of their variation may correspond to the specific application areas of technological equipment that require certain flow-mixing parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.