Inevitably, the 21st century has initiated a series of developments in the construction industry, leading to its digitalization and resulting in a series of innovative approaches and practices. At the same time, the construction industry, being one of the main global environment polluters, should fulfil well-established, as well as novel, sustainability requirements in order to evolve in harmony with the rising concerns on the availability of natural resources. This overview study aims to present the main developments, research, and scientific challenges in the field of sustainable construction, emphasizing the field of energy. The study aims to present a state-of-the-art scientific discussion on the sustainable built environment topic by analyzing cutting edge topics in the fields of building elements and whole building energy assessment, of indoor air quality and low carbon buildings, as well as on sustainable energy systems and smart buildings. The study also presents the state-of-the-art in existing tools which are adopted for the assessment of the sustainable built environment, including the use of digital tools and building information modelling for the energy assessment of the built environment, as well as the application of Life Cycle Assessment on building-related processes. Cross cutting issues related to the analysis of the building sector in the Industry 4.0 era, such as sustainability management topics and environmental geomatics are also discussed. The study concludes in those fields which will be of interest of the scientific community in the following years, towards achieving the goals of the sustainable development of the building sector.
Similar to other cold climate countries, space heating and domestic hot water (DHW) accounts form the largest share of household energy demand in Lithuania. Heat pump technology is considered to be one of the environmentally friendly solutions to increase energy efficiency and reduce the carbon footprint of buildings. Heat pumps have been finding their way into the Lithuanian market since 2002, and currently there are many good practice examples present in the country, especially in the residential and public sectors. Heat pump use is economically advantageous in the Baltic Region, and the market share of these systems is growing. Studies have reported seasonal performance factor (SPF) ranges within 1.8 and 5.6. The lower SPF values are typically attributable to air source heat pumps, whereas the higher efficiency is achieved by ground or water source heat pump applications. While the traditional heat pump techniques are well established in the region, there is a slow uptake of new technologies, such as solar-assisted heat pumps, absorption heat pumps and heat pumps integrated into foundations, tunnels or diaphragm walls. This paper provides a critical review of different heat pump technologies, using Lithuania as a cold climate case study to overview the market trends within the European context. Potential trends for the heat pump technology development in terms of application areas, cost-benefit predictions, as well as environmental aspects, are discussed.
Integration of Building Information Modelling (BIM) and Life Cycle Assessment (LCA) for sustainable constructions JSACE 4/13
Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote "bottom-up" solutions for the transition to a zero carbon society.
The water supply chain is under increasing stress as urbanisation and population growth is driving more and more people to move to cities. An increasing amount of city planners are now looking for alternative water resources, rainwater being one of them. There are multiple benefits to on-site water collection, storage and use, as proven by multiple published studies and successful projects around the world; however, rainwater harvesting (RWH) has remained a niche technique, not seen as part of the mainstream. One of the reasons for this is that, traditionally, rainwater has only been collected from rooves and other horizontal surfaces, and then transferred and stored in various subsurface holding tanks. This method of RWH is dated and not very effective. Furthermore, rainwater is one of the purest water sources, but when collected from horizontal surfaces, it gets polluted with particles that have settled on those surfaces. As a result, RWH in this way can be used only for specific purposes. In order to fully utilise this natural resource, to enable the creation of sustainable cities, we must devise a new method for collecting rainwater. One aspect of RWH that has not yet been deeply explored is collecting it from vertical surfaces. Although some abstract studies have already been conducted, concerning water runoff from vertical surfaces, no studies have evaluated the possibility of harvesting and using such water. In this paper, the impacts of different sets of conditions and variables on the performance of RWH systems mounted on vertical surfaces, such as building facades, are compared. In addition, this study aimed to evaluate the potential of such systems to be used in real-world projects around the globe. To accurately measure collected rainwater, an experimental stand was constructed. This stand consisted of a mechanism that allowed the water-collecting surface and its parameters to be changed, whilst also measuring various aspects of the weather and the amount of water that was successfully harvested. The experiments were conducted in both a controlled environment (laboratory) and under real (natural) conditions. The results of this study provide a more accurate evaluation of how vertical RWH systems can be implemented in real-life projects around the globe and show how natural conditions and the surfaces used can change the effectiveness of RWH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.