This paper shows how explicit model predictive control (MPC) strategies can be implemented in Python. They use a pre-calculated map between state measurements and control inputs to simplify and accelerate the calculation of optimal control inputs. By shifting majority of the computational effort offline, the concept of explicit MPC offers a significantly faster and cheaper implementation of model predictive control. We show how explicit MPC feedbacks are designed and exported to a self-contained Python code that can be easily merged with existing applications. Two examples are provided to illustrate the procedure. One considers the design of an artificial player for a videogame. The second one tackles the problem of quadrocopter control.
The paper describes a system identification method for a nonlinear system based on a multi-point linear approximation. We show that under mild assumptions, the task can be transformed into a series of one-dimensional approximations, for which we propose an efficient solution method based on solving simple nonlinear programs (NLPs). The approach provides identification of nonlinear systems in a polynomial model structure (ARX,OE,BJ) from input-output data. The approximation is based on a neural network modelling procedure. The proposed modelling procedure is characterized by fast training, adjustable accuracy and reduced complexity of the final model. The modelling technique is widely applicable in automotive, power electronics, computer graphics, etc..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.