A rectangular negative branch off-axis hybrid resonator was coupled to a 10 kW class chemical oxygen-iodine laser. Resonator setup and alignment turned out to be straightforward. The extracted power was 6.6 kW and reached approximately 70% of the power for an optimized stable resonator. The divergence of the emitted laser beam in the unstable direction was lower than two times the diffraction limit. Experimentally measured margins for mirror misalignment were found in close agreement with numerical calculations.
A modified negative branch confocal unstable resonator (MNBUR) was coupled to the chemical oxygen-iodine laser (COIL) device of the German Aerospace Center. It consists of two spherical mirrors and a rectangular scraper for power extraction. Experimentally measured distributions of the near- and far-field intensities and the near-field phase were found in close agreement to numerical calculations. The extracted power came up to approximately 90% of the power as expected for a stable resonator coupled to the same volume of the active medium. The output power revealed a considerable insensitivity towards tilts of the resonator mirrors and the ideal arrangement of the scraper was found to be straightforward by monitoring the near-field distributions of intensity and phase. The beam quality achieved with the MNBUR of an extremely low magnification of only 1.04 was rather poor but nevertheless in accordance with theory. The demonstrated consistency between theory and experiment makes the MNBUR an attractive candidate for lasers that allow for higher magnification. In particular, it promises high brilliance in application to 100 kW class COIL devices, superior to the conventional negative branch confocal unstable resonator.
In a stable resonator configuration, the output power and the power density distribution of a chemical oxygen-iodine Laser (COIL) were measured for various outcoupling geometries: Diaphragms with slit apertures of various size were introduced intracavity in front of the outcoupling mirror. The slit was placed at different positions along the flow axis. Furthermore, outcoupling mirrors ofvarious reflectivity were used.For all experimental conditions the measured power density distribution at the outcoupling mirror reveals strong symmetry effects: The beam patterns are always symmetric to the resonator axis. The beam shape and the beam size are defined by the hardware aperture that is nearest to the resonator axis. As a function ofthe slit width, the laser output power saturates well before the aperture of the resonator is fully opened. 50%ofthe maximum output power were achieved at a width of 6 mm only. Good agreement is found between the measured data and theoretical calculations, when taking into account the specific flow conditions. The data highlight the significance of deactivation processes and the strong iodine repuniping mechanism within the cavity.For standard operating conditions a Rigrod type analysis reveals a small signal gain that is nearly constant throughout the cavity exceeding 1 .3% cm1 . The outcoupling reflectivity for the maxiinuni power output was found at a value of about 94%. These experimental data agree well with a simplified analytic model for gain saturation and power extraction as derived by G.D.Hager et al..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.