We develop a new approach to the validation of simulation models by exploiting elements from fuzzy set theory and machine learning. A fuzzy resemblance relation concept is used to set up a mathematical framework for measuring the degree of similarity between the input-output behavior of a simulation model and the corresponding behavior of the real system. A neuro-fuzzy inference algorithm is employed to automatically learn the required resemblance relation from real and simulated data. Ultimately, defuzzification strategies are applied to obtain a coefficient on the unit interval that characterizes the degree of model validity. An example in the airline industry illustrates the practical application of this methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.