A Western-type diet is associated with osteoporosis and calcium nephrolithiasis. On the basis of observations that calcium retention and inhibition of bone resorption result from alkali administration, it is assumed that the acid load inherent in this diet is responsible for increased bone resorption and calcium loss from bone. However, it is not known whether the dietary acid load acts directly or indirectly (i.e., via endocrine changes) on bone metabolism. It is also unclear whether alkali administration affects bone resorption/calcium balance directly or whether alkali-induced calcium retention is dependent on the cation (i.e., potassium) supplied with administered base. The effects of neutralization of dietary acid load (equimolar amounts of NaHCO(3) and KHCO(3) substituted for NaCl and KCl) in nine healthy subjects (6 men, 3 women) under metabolic balance conditions on calcium balance, bone markers, and endocrine systems relevant to bone [glucocorticoid secretion, IGF-1, parathyroid hormone (PTH)/1,25(OH)(2) vitamin D and thyroid hormones] were studied. Neutralization for 7 days induced a significant cumulative calcium retention (10.7 +/- 0.4 mmol) and significantly reduced the urinary excretion of deoxypyridinoline, pyridinoline, and n-telopeptide. Mean daily plasma cortisol decreased from 264 +/- 45 to 232 +/- 43 nmol/l (P = 0.032), and urinary excretion of tetrahydrocortisol (THF) decreased from 2,410 +/- 210 to 2,098 +/- 190 microg/24 h (P = 0.027). No significant effect was found on free IGF-1, PTH/1,25(OH)(2) vitamin D, or thyroid hormones. An acidogenic Western diet results in mild metabolic acidosis in association with a state of cortisol excess, altered divalent ion metabolism, and increased bone resorptive indices. Acidosis-induced increases in cortisol secretion and plasma concentration may play a role in mild acidosis-induced alterations in bone metabolism and possibly in osteoporosis associated with an acidogenic Western diet.
Chronic acid loads are an obligate consequence of the high animal/grain protein content of the Western diet. The effect of this diet-induced metabolic acidosis on bone mass is controversial. In a randomized, prospective, controlled, double-blind trial, 161 postmenopausal women (age 58.6 ؎ 4.8 yr) with low bone mass (T score ؊1 to ؊4) were randomly assigned to 30 mEq of oral potassium (K) citrate (Kcitrate) or 30 mEq of K chloride (KCl) daily. The primary end point was the intergroup difference in mean percentage change in bone mineral density (BMD) at lumbar spine (L2 through L4) after 12 mo. Compared with the women who received KCl, women who received Kcitrate exhibited an intergroup increase in BMD (؎SE) of 1.87 ؎ 0.50% at L2 through L4 (P < 0.001), of 1.39 ؎ 0.48% (P < 0.001) at femoral neck, and of 1.98 ؎ 0.51% (P < 0.001) at total hip. Significant secondary end point intragroup changes also were found: Kcitrate increased L2 through L4 BMD significantly from baseline at months 3, 9, and 12 and reached a month 12 increase of 0.89 ؎ 0.30% (P < 0.05), whereas the KCl arm showed a decreased L2 through L4 BMD by ؊0.98 ؎ 0.38% (P < 0.05), significant only at month 12. Intergroup differences for distal radius and total body were NS. The Kcitrate-treated group demonstrated a sustained and significant reduction in urinary calcium excretion and a significant increase in urinary citrate excretion, with increased citrate excretion indicative of sustained systemic alkalization. Urinary bone resorption marker excretion rates were significantly reduced by Kcitrate, and for deoxypyridinoline, the intergroup difference was significant. Urinary net acid excretion correlated inversely and significantly with the change in BMD in a subset of patients. Large and significant reductions in BP were observed for both K supplements during the entire 12 mo. Bone mass can be increased significantly in postmenopausal women with osteopenia by increasing their daily alkali intake as citrate, and the effect is independent of reported skeletal effects of K.
Ascitic calprotectin reliably predicts PMN count > 250/μL, which may prove useful in the diagnosis of SBP, especially with a readily available bedside testing device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.