This study presents a computer vision application of the structure from motion (SfM) technique in three dimensional high resolution gully monitoring in southern Morocco. Due to impractical use of terrestrial Light Detection and Ranging (LiDAR) in difficult to access gully systems, the inexpensive SfM is a promising tool for analyzing and monitoring soil loss, gully head retreat and plunge pool development following heavy rain events. Objects with known dimensions were placed around the gully scenes for scaling purposes as a workaround for ground control point (GCP) placement. Additionally, the free scaling with objects was compared to terrestrial laser scanner (TLS) data in a field laboratory in Germany. Results of the latter showed discrepancies of 5.6% in volume difference for erosion and 1.7% for accumulation between SfM and TLS. In the Moroccan research area soil loss varied between 0.58 t in an 18.65 m
The silty soils of the intensively used agricultural landscape of the Saxon loess province, eastern Germany, are very prone to soil erosion, mainly caused by water erosion. Rainfall simulations, and also increasingly structure-from-motion (SfM) photogrammetry, are used as methods in soil erosion research not only to assess soil erosion by water, but also to quantify soil loss. This study aims to validate SfM photogrammetry determined soil loss estimations with rainfall simulations measurements. Rainfall simulations were performed at three agricultural sites in central Saxony. Besides the measured data runoff and soil loss by sampling (in mm), terrestrial images were taken from the plots with digital cameras before and after the rainfall simulation. Subsequently, SfM photogrammetry was used to reconstruct soil surface changes due to soil erosion in terms of high resolution digital elevation models (DEMs) for the pre-and post-event (resolution 1 × 1 mm). By multi-temporal change detection, the digital elevation model of difference (DoD) and an averaged soil loss (in mm) is received, which was compared to the soil loss by sampling. Soil loss by DoD was higher than soil loss by sampling. The method of SfM photogrammetry-determined soil loss estimations also include a comparison of three different ground control point (GCP) approaches, revealing that the most complex one delivers the most reliable soil loss by DoD. Additionally, soil bulk density changes and splash erosion beyond the plot were measured during the rainfall simulation experiments in order to separate these processes and associated surface changes from the soil loss by DoD. Furthermore, splash was negligibly small, whereas higher soil densities after the rainfall simulations indicated soil compaction. By means of calculated soil surface changes due to soil compaction, the soil loss by DoD achieved approximately the same value as the soil loss by rainfall simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.