Anaerobic treatment of originally contaminated soil from a former ammunition plant was carried out in a laboratory slurry reactor. While fermenting glucose to ethanol, acetate, and propionate, the anaerobic bacteria completely reduced the nitro groups of 2,4,6-trinitrotoluene (TNT) and aminodinitrotoluenes, which led to a complete and irreversible binding of the reduced products to the soil. 2,4-Dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine were also reduced in the soil slurry and were no longer detectable after the anaerobic treatment. To mineralize the fermentation products, a subsequent aerobic treatment was necessary to complete the bioremediation process. This bioremediation process was tested in a technical scale at Hessisch Lichtenau-Hirschhagen, Germany. A sludge reactor (Terranox system) was filled with 18 m 3 of contaminated soil (main contaminants were TNT, 2,4dinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine) and 10 m 3 of water. The anaerobic stage was carried out by periodical feeding of sucrose. The sludge was subsequently dewatered and treated aerobically. Chemical analysis revealed an overall reduction of more than 99% of the contaminants. Ecotoxicological tests performed with various aquatic systems (luminescent bacteria, daphnids, algae) and terrestrial systems (respiring bacteria, nitrifying bacteria, cress plants, earth worms) showed that residual toxicity could not be detected after the anaerobic/aerobic treatment.
BackgroundPromoting Responsible Research and Innovation (RRI) is a major strategy of the “Science with and for Society” work program of the European Union’s Horizon 2020 Framework Programme for Research and Innovation. RRI aims to achieve a better alignment of research and innovation with the values, needs, and expectations of society. The RRI strategy includes the “keys” of public engagement, open access, gender, ethics, and science education. The Structural Transformation to Attain Responsible BIOSciences (STARBIOS2) project promotes RRI in 6 European research institutions and universities from Bulgaria, Germany, Italy, Slovenia, Poland, and the United Kingdom, in partnership with a further 6 institutions from Brazil, Denmark, Italy, South Africa, Sweden, and the United States.ObjectiveThe project aims to attain RRI structural change in 6 European institutions by implementing action plans (APs) and developing APs for 3 non-European institutions active in the field of biosciences; use the implementation of APs as a learning process with a view to developing a set of guidelines on the implementation of RRI; and develop a sustainable model for RRI in biosciences.MethodsThe project comprises interrelated research and implementation designed to achieve the aforementioned specific objectives. The project is organized into 6 core work packages and 5 supporting work packages. The core work packages deal with the implementation of institutional APs in 6 European institutions based on the structural change activation model. The supporting work packages include technical assistance, learning process on RRI-oriented structural change, monitoring and assessment, communication and dissemination, and project management.ResultsThe project is funded by Horizon 2020 and will run for 4 years (May 2016-April 2020). As of June 2018, the initial phase has been completed. The participating institutions have developed and approved APs and commenced their implementation. An observation tool has been launched by the Technical Assistance Team to collect information from the implementation of APs; the Evaluation & Assessment team has started monitoring the advancement of the project. As part of the communication and dissemination strategy, a project website, a Facebook page, and a Twitter account have been launched and are updated periodically. The International Scientific Advisory Committee has been formed to advise on the reporting and dissemination of the project’s results.ConclusionsIn the short term, we anticipate that the project will have a considerable impact on the organizational processes and structures, improving the RRI uptake in the participating institutions. In the medium term, we expect to make RRI-oriented organizational change scalable across Europe by developing guidelines on RRI implementation and an RRI model in biosciences. In the long term, we expect that the project would help increase the ability of research institutions to make discoveries and innovations in better alignment with societal needs and values.Internat...
Iron oxide nanoparticles (IONP) are currently being studied as green magnet resonance imaging (MRI) contrast agents. They are also used in huge quantities for environmental remediation and water treatment purposes, although very little is known on the consequences of such applications for organisms and ecosystems. In order to address these questions, we synthesised polyvinylpyrrolidone-coated IONP, characterised the particle dispersion in various media and investigated the consequences of an IONP exposure using an array of biochemical and biological assays. Several theoretical approaches complemented the measurements. In aqueous dispersion IONP had an average hydrodynamic diameter of 25 nm and were stable over six days in most test media, which could also be predicted by stability modelling. The particles were tested in concentrations of up to 100 mg Fe per L. The activity of the enzymes glutathione reductase and acetylcholine esterase was not affected, nor were proliferation, morphology or vitality of mammalian OLN-93 cells although exposure of the cells to 100 mg Fe per L increased the cellular iron content substantially. Only at this concentration, acute toxicity tests with the freshwater flea Daphnia magna revealed slightly, yet insignificantly increased mortality. Two fundamentally different bacterial assays, anaerobic activated sludge bacteria inhibition and a modified sediment contact test with Arthrobacter globiformis, both rendered results contrary to the other assays: at the lowest test concentration (1 mg Fe per L), IONP caused a pronounced inhibition whereas higher concentrations were not effective or even stimulating. Preliminary and prospective risk assessment was exemplified by comparing the application of IONP with gadolinium-based nanoparticles as MRI contrast agents. Predicted environmental concentrations were modelled in two different scenarios, showing that IONP could reduce the environmental exposure of toxic Gd-based particles by more than 50%. Application of the Swiss "Precautionary Matrix for Synthetic Nanomaterials" rendered a low precautionary need for using our IONP as MRI agents and a higher one when using them for remediation or water treatment. Since IONP and (considerably more reactive) zerovalent iron nanoparticles are being used in huge quantities for environmental remediation purposes, it has to be ascertained that these particles pose no risk to either human health or to the environment.
Parts of the area of the derelict World-War-II ordnance plant "Werk Tanne" (Clausthal-Zellerfeld, Harz, Germany) are heavily contaminated by chemicals resulting from TNT production and particularly by TNT itself. High soil contamination has to be treated with ex-situ methods but for the extended contamination of surface soil, in-situ phytoremediation is appropriate. The TNT-degrading potential of the rhizosphere of the planted trees and shrubs themselves is augmented by highly active mycorrhiza and white-rot fungi. A phytoremediation measure was established to scale with heavy machinery (soil grader), including the incorporation of white-rot fungi into the soil and planting of mycorrhized trees and shrubs. The effects of site preparation, mycorrhized rhizosphere and white-rot fungi on the degradation of TNT were assessed over one year using a complex monitoring scheme, including a battery of five biotests and field investigations of selected indicators (soil mesofauna, decomposition). The results of the monitoring showed the great influence of the grading procedure for site preparation, a diversified sensitivity of the biotest battery and complex reactions of the field indicators. The grading procedure effectively reduced the contamination (almost 90% within the first six months regardless of the initial levels). The phytoremediation measure as a whole reduced hazards of transport of nitro-aromatics by dust or leachate, initiated a secondary succession of the soil ecosystem that could transform the remaining TNT and metabolites over a longer period of time, and thus proved to be an effective decontamination measure applicable in large-scale technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.