Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m3 of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning.
Endo cellulases of plant pathogenic erwinias degrade cellulose as well as the cellulosic domains of barley (1-3,1-4)-beta-glucan. Depolymerization of the latter substrate is mainly caused by (1-3,1-4)-beta-glucanases, which hydrolyze (1-4)-beta glycosidic linkages adjacent to (1-3)-beta linkages. To construct an enzyme for efficient degradation of barley (1-3,1-4)-beta-glucan, the sequence encoding the catalytic domain and interdomain linker of the cellulase from Erwinia carotovora subspecies atroseptica was fused to that for the heat stable Bacillus hybrid, H(A12-M) delta Y13 (1-3,1-4)-beta glucanase. The chimeric enzyme secreted from Escherichia coli cells did not remain covalently assembled as judged by SDS-PAGE. However, the glycosylated and intact enzyme (denoted CELGLU) is secreted from the yeast Pichia pastoris. CELGLU exhibits both cellulase and (1-3,1-4)-beta-glucanase catalytic activities, and was accordingly classified a true multienzyme. HPLC and NMR analyses revealed that among the products from CELGLU, di- and trimeric oligosaccharides were identical to those produced by the parental cellulase. Tetrameric oligosaccharides, derived from the (1-3,1-4)-beta-glucanase activity of CELGLU, were further degraded by the cellulase moiety to yield glucose and trimers. Compared with the parental enzymes, CELGLU exhibits substantially higher Vmax for degradation of both soluble cellulose and barley (1-3,1-4)-beta-glucan. These findings point to construction of multienzymes as an effective approach for engineering enzymes with novel characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.