ENCODE 3 (2012-2017) expanded production and added new types of assays 8 (Fig. 1, Extended Data Fig. 1), which revealed landscapes of RNA binding and the 3D organization of chromatin via methods such as chromatin interaction analysis by paired-end tagging (ChIA-PET) and Hi-C chromosome conformation capture. Phases 2 and 3 delivered 9,239 experiments (7,495 in human and 1,744 in mouse) in more than 500 cell types and tissues, including mapping of transcribed regions and transcript isoforms, regions of transcripts recognized by RNA-binding proteins, transcription factor binding regions, and regions that harbour specific histone modifications, open chromatin, and 3D chromatin interactions. The results of all of these experiments are available at the ENCODE portal (http://www.encodeproject.org). These efforts, combined with those of related projects and many other laboratories, have produced a greatly enhanced view of the human genome (Fig. 2), identifying 20,225 protein-coding and 37,595 noncoding genes
Alberts P, Olmane E, Brok ane L, Krastin ßa Z, Romanovska M, Kup cs K, Isajevs S, Proboka G, Erdmanis R, Nazarovs J, Venskus D. Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports. APMIS 2016; 124: 896-904 Oncolytic virotherapy is a recent addition to cancer treatment. Here, we describe positive treatment outcomes in three patients using Rigvir virotherapy. One of the patients is diagnosed with melanoma stage IV M1c, one with small cell lung cancer stage IIIA, and one with histiocytic sarcoma stage IV. The diagnoses of all patients are verified by histology or cytology. All patients started Rigvir treatment within a few months after being diagnosed and are currently continuing Rigvir treatment. The degree of regression of the disease has been determined by computed tomography. Safety assessment of adverse events graded according to NCI CTCAE did not show any value above grade 1 during Rigvir Ò treatment. Using current standard treatments, the survival of patients with the present diagnoses is low. In contrast, the patients described here were diagnosed 3.5, 7.0, and 6.6 years ago, and their condition has improved and been stabile for over 1.5, 6.5, and 4 years, respectively. These observations suggest that virotherapy using Rigvir can successfully be used in long-term treatment of patients with melanoma stage IV M1c, small cell lung cancer stage IIIA, and histiocytic sarcoma stage IV and therefore could be included in prospective clinical studies.
The most common type of pituitary neoplasms is benign pituitary adenoma (PA). Clinically significant PAs affect around 0.1% of the population. Currently, there is no established human PA cell culture available and when PA tumor cells are cultured they form two distinct types depending on culturing conditions either free-floating aggregates also known as pituispheres or cells adhering to the surface of cell plates and displaying mesenchymal stem-like properties. The aim of this study was to trace the origin of sphere-forming and adherent pituitary cell cultures and characterize the potential use of these surgery derived cell lines as PA model. We carried out a paired-end exome sequencing of patients' tumor and germline DNA using Illumina NextSeq followed by characterization of corresponding PA cell cultures. Variation analysis revealed a low amount of somatic mutations (mean = 5.2, range 3-7) in exomes of PAs. Somatic mutations of the primary surgery material can be detected in the exomes of respective pituispheres, but not in exomes of respective mesenchymal stem-like cells. For the first time, we show that the genome of pituispheres represents genome of PA while mesenchymal stem cells derived from the PA tissue do not contain mutations characteristic to PA in their genome, therefore, most likely representing normal cells of pituitary or surrounding tissues. This finding indicates that pituispheres can be used as a human model of PA cells, but combination of cell culturing techniques and NGS needs to be employed to adjust for disability to propagate spheres in culturing conditions.
Thyroid cancer is ranked in ninth place among all the newly diagnosed cancer cases in 2020. Differentiated thyroid cancer behavior can vary from indolent to extremely aggressive. Currently, predictions of cancer prognosis are mainly based on clinicopathological features, which are direct consequences of cell and tissue microenvironment alterations. These alterations include genetic changes, cell cycle disorders, estrogen receptor expression abnormalities, enhanced epithelial-mesenchymal transition, extracellular matrix degradation, increased hypoxia, and consecutive neovascularization. All these processes are represented by specific genetic and molecular markers, which can further predict thyroid cancer development, progression, and prognosis. In conclusion, evaluation of cancer genetic and molecular patterns, in addition to clinicopathological features, can contribute to the identification of patients with a potentially worse prognosis. It is essential since it plays a crucial role in decision-making regarding initial surgery, postoperative treatment, and follow-up. To date, there is a large diversity in methodologies used in different studies, frequently leading to contradictory results. To evaluate the true significance of predictive markers, more comparable studies should be conducted.
Acromegaly is a disease mainly caused by pituitary neuroendocrine tumor (PitNET) overproducing growth hormone. First-line medication for this condition is the use of somatostatin analogs (SSAs), that decrease tumor mass and induce antiproliferative effects on PitNET cells. Dopamine agonists (DAs) can also be used if SSA treatment is not effective. This study aimed to determine differences in transcriptome signatures induced by SSA/DA therapy in PitNET tissue. We selected tumor tissue from twelve patients with somatotropinomas, with half of the patients receiving SSA/DA treatment before surgery and the other half treatment naive. Transcriptome sequencing was then carried out to identify differentially expressed genes (DEGs) and their protein–protein interactions, using pathway analyses. We found 34 upregulated and six downregulated DEGs in patients with SSA/DA treatment. Three tumor development promoting factors MUC16, MACC1, and GRHL2, were significantly downregulated in therapy administered PitNET tissue; this finding was supported by functional studies in GH3 cells. Protein–protein interactions and pathway analyses revealed extracellular matrix involvement in the antiproliferative effects of this type of the drug treatment, with pronounced alterations in collagen regulation. Here, we have demonstrated that somatotropinomas can be distinguished based on their transcriptional profiles following SSA/DA therapy, and SSA/DA treatment does indeed cause changes in gene expression. Treatment with SSA/DA significantly downregulated several factors involved in tumorigenesis, including MUC16, MACC1, and GRHL2. Genes that were upregulated, however, did not have a direct influence on antiproliferative function in the PitNET cells. These findings suggested that SSA/DA treatment acted in a tumor suppressive manner and furthermore, collagen related interactions and pathways were enriched, implicating extracellular matrix involvement in this anti-tumor effect of drug treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.