Cell type identification is essential for single-cell RNA sequencing (scRNA-seq) studies, currently transforming the life sciences. CHETAH (CHaracterization of cEll Types Aided by Hierarchical classification) is an accurate cell type identification algorithm that is rapid and selective, including the possibility of intermediate or unassigned categories. Evidence for assignment is based on a classification tree of previously available scRNA-seq reference data and includes a confidence score based on the variance in gene expression per cell type. For cell types represented in the reference data, CHETAH’s accuracy is as good as existing methods. Its specificity is superior when cells of an unknown type are encountered, such as malignant cells in tumor samples which it pinpoints as intermediate or unassigned. Although designed for tumor samples in particular, the use of unassigned and intermediate types is also valuable in other exploratory studies. This is exemplified in pancreas datasets where CHETAH highlights cell populations not well represented in the reference dataset, including cells with profiles that lie on a continuum between that of acinar and ductal cell types. Having the possibility of unassigned and intermediate cell types is pivotal for preventing misclassification and can yield important biological information for previously unexplored tissues.
Cell type identification is essential for single-cell RNA sequencing (scRNA-seq) studies that are currently transforming the life sciences. CHETAH (CHaracterization of cEll Types Aided by Hierarchical clustering) is an accurate cell type identification algorithm that is rapid and selective, including the possibility of intermediate or unassigned categories. Evidence for assignment is based on a classification tree of previously available scRNA-seq reference data and includes a confidence score based on the variance in gene expression per cell type. For cell types represented in the reference data, CHETAH's accuracy is as good as existing methods. Its specificity is superior when cells of an unknown type are encountered, such as malignant cells in tumor samples which it pinpoints as intermediate or unassigned. Although designed for tumor samples in particular, the use of unassigned and intermediate types is also valuable in other exploratory studies. This is exemplified in pancreas datasets where CHETAH highlights cell populations not well represented in the reference dataset, including cells with profiles that lie on a continuum between that of acinar and ductal cell types. Having the possibility of unassigned and intermediate cell types is pivotal for preventing misclassification and can yield important biological information for previously unexplored tissues.
Background The collective of somatic mutations in a genome represents a record of mutational processes that have been operative in a cell. These processes can be investigated by extracting relevant mutational patterns from sequencing data. Results Here, we present the next version of MutationalPatterns, an R/Bioconductor package, which allows in-depth mutational analysis of catalogues of single and double base substitutions as well as small insertions and deletions. Major features of the package include the possibility to perform regional mutation spectra analyses and the possibility to detect strand asymmetry phenomena, such as lesion segregation. On top of this, the package also contains functions to determine how likely it is that a signature can cause damaging mutations (i.e., mutations that affect protein function). This updated package supports stricter signature refitting on known signatures in order to prevent overfitting. Using simulated mutation matrices containing varied signature contributions, we showed that reliable refitting can be achieved even when only 50 mutations are present per signature. Additionally, we incorporated bootstrapped signature refitting to assess the robustness of the signature analyses. Finally, we applied the package on genome mutation data of cell lines in which we deleted specific DNA repair processes and on large cancer datasets, to show how the package can be used to generate novel biological insights. Conclusions This novel version of MutationalPatterns allows for more comprehensive analyses and visualization of mutational patterns in order to study the underlying processes. Ultimately, in-depth mutational analyses may contribute to improved biological insights in mechanisms of mutation accumulation as well as aid cancer diagnostics. MutationalPatterns is freely available at http://bioconductor.org/packages/MutationalPatterns.
Summary Genetic instability is a major concern for successful application of stem cells in regenerative medicine. However, the mutational consequences of the most applied stem cell therapy in humans, hematopoietic stem cell transplantation (HSCT), remain unknown. Here we characterized the mutation burden of hematopoietic stem and progenitor cells (HSPCs) of human HSCT recipients and their donors using whole-genome sequencing. We demonstrate that the majority of transplanted HSPCs did not display altered mutation accumulation. However, in some HSCT recipients, we identified multiple HSPCs with an increased mutation burden after transplantation. This increase could be attributed to a unique mutational signature caused by the antiviral drug ganciclovir. Using a machine learning approach, we detected this signature in cancer genomes of individuals who received HSCT or solid organ transplantation earlier in life. Antiviral treatment with nucleoside analogs can cause enhanced mutagenicity in transplant recipients, which may ultimately contribute to therapy-related carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.