The purpose of this study was to investigate effects of concurrent strength and endurance training (SE) (2 plus 2 days a week) versus strength training only (S) (2 days a week) in men [SE: n=11; 38 (5) years, S: n=16; 37 (5) years] over a training period of 21 weeks. The resistance training program addressed both maximal and explosive strength components. EMG, maximal isometric force, 1 RM strength, and rate of force development (RFD) of the leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF) throughout the lengths of 4/15-12/15 (L(f)) of the femur, muscle fibre proportion and areas of types I, IIa, and IIb of the vastus lateralis (VL), and maximal oxygen uptake (VO(2max)) were evaluated. No changes occurred in strength during the 1-week control period, while after the 21-week training period increases of 21% (p<0.001) and 22% (p<0.001), and of 22% (p<0.001) and 21% (p<0.001) took place in the 1RM load and maximal isometric force in S and SE, respectively. Increases of 26% (p<0.05) and 29% (p<0.001) occurred in the maximum iEMG of the VL in S and SE, respectively. The CSA of the QF increased throughout the length of the QF (from 4/15 to 12/15 L(f)) both in S (p<0.05-0.001) and SE (p<0.01-0.001). The mean fibre areas of types I, IIa and IIb increased after the training both in S (p<0.05 and 0.01) and SE (p<0.05 and p<0.01). S showed an increase in RFD (p<0.01), while no change occurred in SE. The average iEMG of the VL during the first 500 ms of the rapid isometric action increased (p<0.05-0.001) only in S. VO(2max) increased by 18.5% (p<0.001) in SE. The present data do not support the concept of the universal nature of the interference effect in strength development and muscle hypertrophy when strength training is performed concurrently with endurance training, and the training volume is diluted by a longer period of time with a low frequency of training. However, the present results suggest that even the low-frequency concurrent strength and endurance training leads to interference in explosive strength development mediated in part by the limitations of rapid voluntary neural activation of the trained muscles.
Physical activity recommendations for public health include typically muscle-strengthening activities for a minimum of 2 days a week. The range of interindividual variation in responses to resistance training (RT) aiming to improve health and well-being requires to be investigated. The purpose of this study was to quantify high and low responders for RT-induced changes in muscle size and strength and to examine possible effects of age and sex on these responses. Previously collected data of untrained healthy men and women (age 19 to 78 years, n = 287 with 72 controls) were pooled for the present study. Muscle size and strength changed during RT are 4.8 ± 6.1 % (range from −11 to 30 %) and 21.1 ± 11.5 % (range from −8 to 60 %) compared to pre-RT, respectively. Age and sex did not affect to the RT responses. Fourteen percent and 12 % of the subjects were defined as high responders (>1 standard deviation (SD) from the group mean) for the RT-induced changes in muscle size and strength, respectively. When taking into account the results of nontraining controls (upper 95 % CI), 29 and 7 % of the subjects were defined as low responders for the RTinduced changes in muscle size and strength, respectively. The muscle size and strength responses varied extensively between the subjects regardless of subject's age and sex. Whether these changes are associated with, e.g., functional capacity and metabolic health improvements due to RT requires further studies.
The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([V·]O(₂max)), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [V·]O(₂max) (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.
To study effects of concurrent explosive strength and endurance training on aerobic and anaerobic performance and neuromuscular characteristics, 13 experimental (E) and 12 control (C) young (16 - 18 years) distance runners trained for eight weeks with the same total training volume but 19% of the endurance training in E was replaced by explosive training. Maximal speed of maximal anaerobic running test and 30-m speed improved in E by 3.0 +/- 2.0% (p < 0.01) and by 1.1 +/- 1.3% (p < 0.05), respectively. Maximal speed of aerobic running test, maximal oxygen uptake and running economy remained unchanged in both groups. Concentric and isometric leg extension forces increased in E but not in C. E also improved (p < 0.05) force-time characteristics accompanied by increased (p < 0.05) rapid neural activation of the muscles. The thickness of quadriceps femoris increased in E by 3.9 +/- 4.7% (p < 0.01) and in C by 1.9 +/- 2.0% (p < 0.05). The concurrent explosive strength and endurance training improved anaerobic and selective neuromuscular performance characteristics in young distance runners without decreases in aerobic capacity, although almost 20% of the total training volume was replaced by explosive strength training for eight weeks. The neuromuscular improvements could be explained primarily by neural adaptations.
This study examined effects of periodized maximal versus explosive strength training and reduced strength training, combined with endurance training, on neuromuscular and endurance performance in recreational endurance runners. Subjects first completed 6 weeks of preparatory strength training. Then, groups of maximal strength (MAX, n=11), explosive strength (EXP, n=10) and circuit training (C, n=7) completed an 8-week strength training intervention, followed by 14 weeks of reduced strength training. Maximal strength (1RM) and muscle activation (EMG) of leg extensors, countermovement jump (CMJ), maximal oxygen uptake (VO(2MAX)), velocity at VO(2MAX) (vVO(2MAX)) running economy (RE) and basal serum hormones were measured. 1RM and CMJ improved (p<0.05) in all groups accompanied by increased EMG in MAX and EXP (p<0.05) during strength training. Minor changes occurred in VO(2MAX), but vVO(2MAX) improved in all groups (p<0.05) and RE in EXP (p<0.05). During reduced strength training 1RM and EMG decreased in MAX (p<0.05) while vVO(2MAX) in MAX and EXP (p<0.05) and RE in MAX (p<0.01) improved. Serum testosterone and cortisol remained unaltered. Maximal or explosive strength training performed concurrently with endurance training was more effective in improving strength and neuromuscular performance and in enhancing vVO (2MAX) and RE in recreational endurance runners than concurrent circuit and endurance training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.