Many applications in signal processing require the estimation of mean and covariance matrices of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation techniques employed in signal processing, such as M -estimators, provide limited robustness in the multivariate case. For this reason, this paper introduces the signal processing community to the highly robust class of multivariate estimators called multivariate S-estimators. The paper extends multivariate S-estimation theory to the complex-valued domain. The theoretical performances of S-estimators are explored and compared with M -estimators through the practical lens of the minimum variance distortionless response (MVDR) beamformer, and the empirical finite-sample performances of the estimators are explored through the practical lens of direction-of-arrival (DOA) estimation using the multiple signal classification (MUSIC) algorithm.INDEX TERMS Complex elliptically symmetric distribution, complex-valued S-estimator, covariance and shape matrix estimation, robust estimation of multivariate location and scatter, Sq-estimator.
High-breakdown-point estimators of multivariate location and shape matrices, such as the MM-estimator with smooth hard rejection and the Rocke S-estimator, are generally designed to have high efficiency at the Gaussian distribution. However, many phenomena are non-Gaussian, and these estimators can therefore have poor efficiency. This paper proposes a new tunable S-estimator, termed the S-q estimator, for the general class of symmetric elliptical distributions, a class containing many common families such as the multivariate Gaussian, t-, Cauchy, Laplace, hyperbolic, and normal inverse Gaussian distributions. Across this class, the S-q estimator is shown to generally provide higher maximum efficiency than other leading high-breakdown estimators while maintaining the maximum breakdown point. Furthermore, its robustness is demonstrated to be on par with these leading estimators while also being more stable with respect to initial conditions. From a practical viewpoint, these properties make the S-q broadly applicable for practitioners. This is demonstrated with an example application-the minimum-variance optimal allocation of financial portfolio investments.
High‐breakdown‐point estimators of multivariate location and shape matrices, such as the ‐estimator with smoothed hard rejection and the Rocke ‐estimator, are generally designed to have high efficiency for Gaussian data. However, many phenomena are non‐Gaussian, and these estimators can therefore have poor efficiency. This article proposes a new tunable ‐estimator, termed the ‐estimator, for the general class of symmetric elliptical distributions, a class containing many common families such as the multivariate Gaussian, ‐, Cauchy, Laplace, hyperbolic, and normal inverse Gaussian distributions. Across this class, the ‐estimator is shown to generally provide higher maximum efficiency than other leading high‐breakdown estimators while maintaining the maximum breakdown point. Furthermore, the ‐estimator is demonstrated to be distributionally robust, and its robustness to outliers is demonstrated to be on par with these leading estimators while also being more stable with respect to initial conditions. From a practical viewpoint, these properties make the ‐estimator broadly applicable for practitioners. These advantages are demonstrated with an example application—the minimum‐variance optimal allocation of financial portfolio investments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.