The developmental programs that generate a broad repertoire of regulatory T cells (T reg cells) able to respond to both self antigens and non–self antigens remain unclear. Here we found that mature T reg cells were generated through two distinct developmental programs involving CD25 + T reg cell progenitors (CD25 + T reg P) and Foxp3 lo T reg cell progenitors (Foxp3 lo T reg P). The CD25 + T reg P had higher rates of apoptosis and interacted with thymic self-antigens with higher affinity than Foxp3 lo T reg P, and had a T cell antigen receptor (TCR) repertoire and transcriptome distinct from that of Foxp3 lo T reg P. The development of CD25 + T reg P and Foxp3 lo T reg P was controlled by distinct signaling pathways and enhancers. Transcriptomic and histocytometric data suggested that CD25 + T reg P and Foxp3 lo T reg P arose by coopting negative and positive selection programs, respectively. T reg cells derived from CD25 + T reg P, but not Foxp3 lo T reg P, prevented experimental autoimmune encephalitis. Our findings indicate that T reg cells arise through two distinct developmental programs that are both required for a comprehensive T reg cell repertoire capable of establishing immune tolerance.
SUMMARY T cell receptor (TCR) cross-reactivity between major histocompatibility complex II (MHCII)-binding self and foreign peptides could influence the naïve CD4+ T cell repertoire and autoimmunity. We found that nonamer peptides that bind to the same MHCII molecule only need to share five amino acids to cross-react on the same TCR. This property was biologically relevant since systemic expression of a self peptide reduced the size of a naïve cell population specific for a related foreign peptide by deletion of cells with cross-reactive TCRs. Reciprocally, an incompletely deleted naïve T cell population specific for a tissue-restricted self peptide could be triggered by related microbial peptides to cause autoimmunity. Thus, TCR cross-reactivity between similar self and foreign peptides can reduce the size of certain foreign peptide-specific T cell populations, and may allow T cell populations specific for tissue-restricted self peptides to cause autoimmunity after infection.
Multiple sclerosis (MS) is an incurable autoimmune neurodegenerative disease. Environmental factors may be key to MS prevention and treatment. MS prevalence and severity decrease with increasing sunlight exposure and vitamin D 3 supplies, supporting our hypothesis that the sunlight-dependent hormone, 1,25-dihydroxyvitamin D 3 (1,25-(OH) 2 D 3 ), inhibits autoimmune T-cell responses in MS. Moreover, 1,25-(OH) 2 D 3 inhibits and reverses experimental autoimmune encephalomyelitis (EAE), an MS model. Here, we investigated whether 1,25-(OH) 2 D 3 inhibits EAE via the vitamin D receptor (VDR) in T lymphocytes. Using bone marrow chimeric mice with a disrupted VDR only in radiosensitive hematopoietic cells or radio-resistant non-hematopoietic cells, we found that hematopoietic cell VDR function was necessary for 1,25-(OH) 2 D 3 to inhibit EAE. Furthermore, conditional targeting experiments showed that VDR function in T cells was necessary. Neither 1,25-(OH) 2 D 3 nor T-cell-specific VDR targeting influenced CD4 1 Foxp3 1 T-cell proportions in the periphery or the CNS in these studies. These data support a model wherein 1,25-(OH) 2 D 3 acts directly on pathogenic CD41 T cells to inhibit EAE.
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease with a rapidly increasing female gender bias. MS prevalence decreases with increasing sunlight exposure, supporting our hypothesis that the sunlight-dependent hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is a natural inhibitor of autoimmune T cell responses in MS. We found that vitamin D3 inhibited experimental autoimmune encephalomyelitis (EAE) in intact female mice, but not in ovariectomized females or males. To learn whether 17β-estradiol (E2) is essential for vitamin D3-mediated protection, ovariectomized female mice were given E2 or placebo and evaluated for vitamin D3-mediated EAE resistance. Diestrus-level E2 implants alone provided no benefit, but they restored vitamin D3-mediated EAE resistance in the ovariectomized females. Synergy between E2 and vitamin D3 occurred through vitamin D3-mediated enhancement of E2 synthesis, as well as E2-mediated enhancement of vitamin D receptor expression in the inflamed CNS. In males, E2 implants did not enable vitamin D3 to inhibit EAE. The finding that vitamin D3-mediated protection in EAE is female-specific and E2-dependent suggests that declining vitamin D3 supplies due to sun avoidance might be contributing to the rapidly increasing female gender bias in MS. Moreover, declining E2 synthesis and vitamin D3-mediated protection with increasing age might be contributing to MS disease progression in older women.
Type 1 diabetes is caused by autoreactive T cell-mediated β cell destruction. Even though co-inhibitory receptor programmed death-1 (PD-1) restrains autoimmunity, the expression and regulation of its cognate ligands on β cell remains unknown. Here, we interrogated β cell-intrinsic programmed death ligand-1 (PD-L1) expression in mouse and human islets. We measured a significant increase in the level of PD-L1 surface expression and the frequency of PD-L1+ β cells as non-obese diabetic (NOD) mice aged and developed diabetes. Increased β cell PD-L1 expression was dependent on T cell infiltration, as β cells from Rag1-deficient mice lacked PD-L1. Using Rag1-deficient NOD mouse islets, we determined that IFN-γ promotes β cell PD-L1 expression. We performed analogous experiments using human samples, and found a significant increase in β cell PD-L1 expression in type 1 diabetic samples compared to type 2 diabetic, autoantibody positive, and non-diabetic samples. Among type 1 diabetic samples, β cell PD-L1 expression correlated with insulitis. In vitro experiments with human islets from non-diabetic individuals showed that IFN-γ promoted β cell PD-L1 expression. These results suggest that insulin-producing β cells respond to pancreatic inflammation and IFN-γ production by upregulating PD-L1 expression to limit self-reactive T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.