The prevalence of multiple sclerosis (MS) increases significantly with decreasing UV B light exposure, possibly reflecting a protective effect of vitamin D3. Consistent with this theory, previous research has shown a strong protective effect 1,25-dihydroxyvitamin D3 in experimental autoimmune encephalomyelitis (EAE), an MS model. However, it is not known whether the hormone precursor, vitamin D3, has protective effects in EAE. To address this question, B10.PL mice were fed a diet with or without vitamin D3, immunized with myelin basic protein, and studied for signs of EAE and for metabolites and transcripts of the vitamin D3 endocrine system. The intact, vitamin D3-fed female mice had significantly less clinical, histopathological, and immunological signs of EAE than ovariectomized females or intact or castrated males. Correlating with reduced EAE, the intact, vitamin D3-fed female mice had significantly more 1,25-dihydroxyvitamin D3 and fewer CYP24A1 transcripts, encoding the 1,25-dihydroxyvitamin D3-inactivating enzyme, in the spinal cord than the other groups of mice. Thus, there was an unexpected synergy between vitamin D3 and ovarian tissue with regard to EAE inhibition. We hypothesize that an ovarian hormone inhibited CYP24A1 gene expression in the spinal cord, so the locally-produced 1,25-dihydroxyvitamin D3 accumulated and resolved the inflammation before severe EAE developed. If humans have a similar gender difference in vitamin D3 metabolism in the CNS, then sunlight deprivation would increase the MS risk more significantly in women than in men, which may contribute to the unexplained higher MS incidence in women than in men.
Multiple sclerosis (MS) results from an aberrant, neuroantigen-specific, T cell-mediated autoimmune response. Because MS prevalence and severity decrease sharply with increasing sunlight exposure, and sunlight supports vitamin D3 synthesis, we proposed that vitamin D3 and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) may protect against MS. In support of this hypothesis, 1,25-(OH)2D3 strongly inhibited experimental autoimmune encephalomyelitis (EAE). This inhibition required lymphocytes other than the encephalitogenic T cells. In this study, we tested the hypothesis that 1,25-(OH)2D3 might inhibit EAE through the action of IL-10-producing regulatory lymphocytes. We report that vitamin D3 and 1,25-(OH)2D3 strongly inhibited myelin oligodendrocyte peptide (MOG35–55)-induced EAE in C57BL/6 mice, but completely failed to inhibit EAE in mice with a disrupted IL-10 or IL-10R gene. Thus, a functional IL-10-IL-10R pathway was essential for 1,25-(OH)2D3 to inhibit EAE. The 1,25-(OH)2D3 also failed to inhibit EAE in reciprocal, mixed bone marrow chimeras constructed by transferring IL-10-deficient bone marrow into irradiated wild-type mice and vice versa. Thus, 1,25-(OH)2D3 may be enhancing an anti-inflammatory loop involving hemopoietic cell-produced IL-10 acting on brain parenchymal cells and vice versa. If this interpretation is correct, and humans have a similar bidirectional IL-10-dependent loop, then an IL-10-IL-10R pathway defect could abrogate the anti-inflammatory and neuro-protective functions of sunlight and vitamin D3. In this way, a genetic IL-10-IL-10R pathway defect could interact with an environmental risk factor, vitamin D3 insufficiency, to increase MS risk and severity.
Multiple sclerosis (MS) is a complex neurodegenerative disease whose pathogenesis involves genetic and environmental risk factors leading to an aberrant, neuroantigen-specific, CD4+ T cell-mediated autoimmune response. In support of the hypothesis that vitamin D3 may reduce MS risk and severity, we found that vitamin D3 and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) inhibited induction of experimental autoimmune encephalomyelitis (EAE), an MS model. To investigate how 1,25-(OH)2D3 could carry out anti-inflammatory functions, we administered 1,25-(OH)2D3 or a placebo to mice with EAE, and subsequently analyzed clinical disease, chemokines, inducible nitric oxide synthase (iNOS), and recruitment of dye-labeled monocytes. The 1,25-(OH)2D3 treatment significantly reduced clinical EAE severity within 3 days. Sharp declines in chemokines, inducible iNOS, and CD11b+ monocyte recruitment into the central nervous system (CNS) preceded this clinical disease abatement in the 1,25-(OH)2D3-treated animals. The 1,25-(OH)2D3 did not directly and rapidly inhibit chemokine synthesis in vivo or in vitro. Rather, the 1,25-(OH)2D3 rapidly stimulated activated CD4+ T cell apoptosis in the CNS and spleen. Collectively, these results support a model wherein inflammation stimulates a natural anti-inflammatory feedback loop. The activated inflammatory cells produce 1,25-(OH)2D3, and this hormone subsequently enhances the apoptotic death of inflammatory CD4+ T cells, removing the driving force for continued inflammation. In this way, the sunlight-derived hormone could reduce the risk of chronic CNS inflammation and autoimmune-mediated neurodegenerative disease.
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease with a rapidly increasing female gender bias. MS prevalence decreases with increasing sunlight exposure, supporting our hypothesis that the sunlight-dependent hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is a natural inhibitor of autoimmune T cell responses in MS. We found that vitamin D3 inhibited experimental autoimmune encephalomyelitis (EAE) in intact female mice, but not in ovariectomized females or males. To learn whether 17β-estradiol (E2) is essential for vitamin D3-mediated protection, ovariectomized female mice were given E2 or placebo and evaluated for vitamin D3-mediated EAE resistance. Diestrus-level E2 implants alone provided no benefit, but they restored vitamin D3-mediated EAE resistance in the ovariectomized females. Synergy between E2 and vitamin D3 occurred through vitamin D3-mediated enhancement of E2 synthesis, as well as E2-mediated enhancement of vitamin D receptor expression in the inflamed CNS. In males, E2 implants did not enable vitamin D3 to inhibit EAE. The finding that vitamin D3-mediated protection in EAE is female-specific and E2-dependent suggests that declining vitamin D3 supplies due to sun avoidance might be contributing to the rapidly increasing female gender bias in MS. Moreover, declining E2 synthesis and vitamin D3-mediated protection with increasing age might be contributing to MS disease progression in older women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.