Multiple sclerosis (MS) is a complex neurodegenerative disease whose pathogenesis involves genetic and environmental risk factors leading to an aberrant, neuroantigen-specific, CD4+ T cell-mediated autoimmune response. In support of the hypothesis that vitamin D3 may reduce MS risk and severity, we found that vitamin D3 and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) inhibited induction of experimental autoimmune encephalomyelitis (EAE), an MS model. To investigate how 1,25-(OH)2D3 could carry out anti-inflammatory functions, we administered 1,25-(OH)2D3 or a placebo to mice with EAE, and subsequently analyzed clinical disease, chemokines, inducible nitric oxide synthase (iNOS), and recruitment of dye-labeled monocytes. The 1,25-(OH)2D3 treatment significantly reduced clinical EAE severity within 3 days. Sharp declines in chemokines, inducible iNOS, and CD11b+ monocyte recruitment into the central nervous system (CNS) preceded this clinical disease abatement in the 1,25-(OH)2D3-treated animals. The 1,25-(OH)2D3 did not directly and rapidly inhibit chemokine synthesis in vivo or in vitro. Rather, the 1,25-(OH)2D3 rapidly stimulated activated CD4+ T cell apoptosis in the CNS and spleen. Collectively, these results support a model wherein inflammation stimulates a natural anti-inflammatory feedback loop. The activated inflammatory cells produce 1,25-(OH)2D3, and this hormone subsequently enhances the apoptotic death of inflammatory CD4+ T cells, removing the driving force for continued inflammation. In this way, the sunlight-derived hormone could reduce the risk of chronic CNS inflammation and autoimmune-mediated neurodegenerative disease.
Multiple sclerosis (MS) is a debilitating autoimmune disease of the central nervous system (CNS) that develops in genetically susceptible individuals who are exposed to undefined environmental risk factors. Epidemiological, genetic, and biological evidence suggests that insufficient vitamin D may be an MS risk factor. However, little is known about how vitamin D might be protective in MS. We hypothesized that 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] might regulate gene expression patterns in a manner that would resolve inflammation. To test this hypothesis, experimental autoimmune encephalomyelitis (EAE) was induced in mice, 1,25-(OH)2D3 or a placebo was administered, and 6 h later, DNA microarray hybridization was performed with spinal cord RNA to analyze the gene expression patterns. At this time, clinical, histopathological, and biological studies showed that the two groups did not differ in EAE disease, but changes in several 1,25-(OH)2D3-responsive genes indicated that the 1,25-(OH)2D3 had reached the CNS. Compared with normal mice, placebo-treated mice with EAE showed increased expression of many immune system genes, confirming the acute inflammation. When 1,25-(OH)2D3 was administered, several genes like glial fibrillary acidic protein and eukaryotic initiation factor 2alpha kinase 4, whose expression increased or decreased with EAE, returned to homeostatic levels. Also, two genes with pro-apoptotic functions, calpain-2 and caspase-8-associated protein, increased significantly. A terminal deoxynucleotidyl transferase-mediated dUTP nicked end labeling study detected increased nuclear fragmentation in the 1,25-(OH)2D3-treated samples, confirming increased apoptosis. Together, these results suggest that sensitization of inflammatory cells to apoptotic signals may be one mechanism by which the 1,25-(OH)2D3 resolved EAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.