The dynamics of the Green Leaf Area Index (GLAI) is of great interest for numerous applications such as yield prediction and plant breeding. We present a high-throughput model-assisted method for characterizing GLAI dynamics in maize ( Zea mays subsp. mays ) using multispectral imagery acquired from an Unmanned Aerial Vehicle (UAV). Two trials were conducted with a high diversity panel of 400 lines under well-watered and water-deficient treatments in 2016 and 2017. For each UAV flight, we first derived GLAI estimates from empirical relationships between the multispectral reflectance and ground level measurements of GLAI achieved over a small sample of microplots. We then fitted a simple but physiologically sound GLAI dynamics model over the GLAI values estimated previously. Results show that GLAI dynamics was estimated accurately throughout the cycle (R 2 > 0.9). Two parameters of the model, biggest leaf area and leaf longevity, were also estimated successfully. We showed that GLAI dynamics and the parameters of the fitted model are highly heritable (0.65 ≤ H 2 ≤ 0.98), responsive to environmental conditions, and linked to yield and drought tolerance. This method, combining growth modeling, UAV imagery and simple non-destructive field measurements, provides new high-throughput tools for understanding the adaptation of GLAI dynamics and its interaction with the environment. GLAI dynamics is also a promising trait for crop breeding, and paves the way for future genetic studies.
Finlay–Wilkinson regression is a popular method for analysing genotype–environment interaction in series of plant breeding and variety trials. It involves a regression on the environmental mean, indexing the productivity of an environment, which is driven by a wide array of environmental factors. Increasingly, it is becoming feasible to characterize environments explicitly using observable environmental covariates. Hence, there is mounting interest to replace the environmental index with an explicit regression on such observable environmental covariates. This paper reviews the development of such methods. The focus is on parsimonious models that allow replacing the environmental index by regression on synthetic environmental covariates formed as linear combinations of a larger number of observable environmental covariates. Two new methods are proposed for obtaining such synthetic covariates, which may be integrated into genotype‐specific regression models, that is, criss‐cross regression and a factor‐analytic approach. The main advantage of such explicit modelling is that predictions can be made also for new environments where trials have not been conducted. A published dataset is employed to illustrate the proposed methods.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.