Complex suture patterns can be placed via an all-inside arthroscopic technique delivering higher failure loads for meniscal root repair with little increase in surgical time.
Background: Radial tears of the meniscus represent a challenging clinical scenario because benign neglect and partial meniscectomy have both been shown to have negative biomechanical and long-term clinical consequences.
Media supplementation with collagen hydrolysate was hypothesized to increase the collagen content in engineered cartilage. By d28, hydrolysate at 0.5 mg/mL increased type II collagen content and 1 mg/mL increased mechanical properties, total collagen content, and type II collagen content over controls. By d42, however, controls possessed the highest GAG content and compressive Young's modulus. Real-time PCR found that 1 mg/mL increased type II collagen gene expression in d0 constructs, but increased MMP expression with no effect on type II collagen on d28. A 10 mg/mL concentration produced the lowest tissue properties, the lowest type II collagen gene expression on d0, and the highest MMP gene expression on d28. These results indicate that the duration of culture modulates the response of chondrocytes to collagen hydrolysate in 3D culture, transforming the response from positive to negative. Therefore, collagen hydrolysate as a media supplement is not a viable long-term method to improve the collagen content of engineered cartilage tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.