Human mathematical competence emerges from two representational systems. Competence in some domains of mathematics, such as calculus, relies on symbolic representations that are unique to humans who have undergone explicit teaching. More basic numerical intuitions are supported by an evolutionarily ancient approximate number system that is shared by adults, infants and non-human animals-these groups can all represent the approximate number of items in visual or auditory arrays without verbally counting, and use this capacity to guide everyday behaviour such as foraging. Despite the widespread nature of the approximate number system both across species and across development, it is not known whether some individuals have a more precise non-verbal 'number sense' than others. Furthermore, the extent to which this system interfaces with the formal, symbolic maths abilities that humans acquire by explicit instruction remains unknown. Here we show that there are large individual differences in the non-verbal approximation abilities of 14-year-old children, and that these individual differences in the present correlate with children's past scores on standardized maths achievement tests, extending all the way back to kindergarten. Moreover, this correlation remains significant when controlling for individual differences in other cognitive and performance factors. Our results show that individual differences in achievement in school mathematics are related to individual differences in the acuity of an evolutionarily ancient, unlearned approximate number sense. Further research will determine whether early differences in number sense acuity affect later maths learning, whether maths education enhances number sense acuity, and the extent to which tertiary factors can affect both.
Behavioral, neuropsychological, and brain imaging research points to a dedicated system for processing number that is shared across development and across species. This foundational Approximate Number System (ANS) operates over multiple modalities, forming representations of the number of objects, sounds, or events in a scene. This system is imprecise and hence differs from exact counting. Evidence suggests that the resolution of the ANS, as specified by a Weber fraction, increases with age such that adults can discriminate numerosities that infants cannot. However, the Weber fraction has yet to be determined for participants of any age between 9 months and adulthood, leaving its developmental trajectory unclear. Here we identify the Weber fraction of the ANS in 3-, 4-, 5-, and 6-year-old children and in adults. We show that the resolution of this system continues to increase throughout childhood, with adultlike levels of acuity attained surprisingly late in development.
Many children have significant mathematical learning disabilities (MLD, or dyscalculia) despite adequate schooling. We hypothesize that MLD partly results from a deficiency in the Approximate Number System (ANS) that supports nonverbal numerical representations across species and throughout development. Here we show that ninth grade students with MLD have significantly poorer ANS precision than students in all other mathematics achievement groups (low-, typically-, and high-achieving), as measured by psychophysical assessments of ANS acuity (w) and of the mappings between ANS representations and number words (cv). This relationship persists even when controlling for domain-general abilities. Furthermore, this ANS precision does not differentiate low- from typically-achieving students, suggesting an ANS deficit that is specific to MLD.
It has been difficult to determine how cognitive systems change over the grand time scale of an entire life, as few cognitive systems are well enough understood; observable in infants, adolescents, and adults; and simple enough to measure to empower comparisons across vastly different ages. Here we address this challenge with data from more than 10,000 participants ranging from 11 to 85 years of age and investigate the precision of basic numerical intuitions and their relation to students' performance in school mathematics across the lifespan. We all share a foundational number sense that has been observed in adults, infants, and nonhuman animals, and that, in humans, is generated by neurons in the intraparietal sulcus. Individual differences in the precision of this evolutionarily ancient number sense may impact school mathematics performance in children; however, we know little of its role beyond childhood. Here we find that population trends suggest that the precision of one's number sense improves throughout the schoolage years, peaking quite late at ∼30 y. Despite this gradual developmental improvement, we find very large individual differences in number sense precision among people of the same age, and these differences relate to school mathematical performance throughout adolescence and the adult years. The large individual differences and prolonged development of number sense, paired with its consistent and specific link to mathematics ability across the age span, hold promise for the impact of educational interventions that target the number sense.aging | analog magnitude | approximate number system | cognitive development | ensemble representation A lthough the particulars of our minds may differ from person to person, some aspects of cognition are close to our corethey are universally shared, present in the young, and actively engaged throughout our lifetimes (1, 2). Investigating developmental changes in these core systems may present us with a picture of how the mind transforms from infancy to senescence. Here we investigated change in the approximate number system (ANS), the cognitive system that gives rise to our basic numerical intuitions (3). The ANS generates nonverbal representations of numerosity in nonhuman animals (4, 5), infants (6, 7), school-aged children (8-10), and adults from mathematically fluent cultures (11,12) as well as cultures that do not practice explicit mathematics (13,14). In humans, imaging results suggest that these basic intuitions are supported by neurons in the intraparietal sulcus (15-18), a role that can be observed shortly after birth (19). Given the phylogenetically widespread occurrence of this primitive cognitive resource, the ANS might make little or no contact with the formal mathematical abilities that humans struggle to master and that no other animals acquire (20). Alternatively, this system may be a critical foundation upon which formal mathematical abilities are constructed (21,22). Although some evidence suggests a link between the ANS and formal mathemat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.