It has been difficult to determine how cognitive systems change over the grand time scale of an entire life, as few cognitive systems are well enough understood; observable in infants, adolescents, and adults; and simple enough to measure to empower comparisons across vastly different ages. Here we address this challenge with data from more than 10,000 participants ranging from 11 to 85 years of age and investigate the precision of basic numerical intuitions and their relation to students' performance in school mathematics across the lifespan. We all share a foundational number sense that has been observed in adults, infants, and nonhuman animals, and that, in humans, is generated by neurons in the intraparietal sulcus. Individual differences in the precision of this evolutionarily ancient number sense may impact school mathematics performance in children; however, we know little of its role beyond childhood. Here we find that population trends suggest that the precision of one's number sense improves throughout the schoolage years, peaking quite late at ∼30 y. Despite this gradual developmental improvement, we find very large individual differences in number sense precision among people of the same age, and these differences relate to school mathematical performance throughout adolescence and the adult years. The large individual differences and prolonged development of number sense, paired with its consistent and specific link to mathematics ability across the age span, hold promise for the impact of educational interventions that target the number sense.aging | analog magnitude | approximate number system | cognitive development | ensemble representation A lthough the particulars of our minds may differ from person to person, some aspects of cognition are close to our corethey are universally shared, present in the young, and actively engaged throughout our lifetimes (1, 2). Investigating developmental changes in these core systems may present us with a picture of how the mind transforms from infancy to senescence. Here we investigated change in the approximate number system (ANS), the cognitive system that gives rise to our basic numerical intuitions (3). The ANS generates nonverbal representations of numerosity in nonhuman animals (4, 5), infants (6, 7), school-aged children (8-10), and adults from mathematically fluent cultures (11,12) as well as cultures that do not practice explicit mathematics (13,14). In humans, imaging results suggest that these basic intuitions are supported by neurons in the intraparietal sulcus (15-18), a role that can be observed shortly after birth (19). Given the phylogenetically widespread occurrence of this primitive cognitive resource, the ANS might make little or no contact with the formal mathematical abilities that humans struggle to master and that no other animals acquire (20). Alternatively, this system may be a critical foundation upon which formal mathematical abilities are constructed (21,22). Although some evidence suggests a link between the ANS and formal mathemat...
Basic intellectual abilities of quantity and numerosity estimation have been detected across animal species. Such abilities are referred to as ‘number sense’. For human species, individual differences in number sense are detectable early in life, persist in later development, and relate to general intelligence. The origins of these individual differences are unknown. To address this question, we conducted the first large-scale genetically sensitive investigation of number sense, assessing numerosity discrimination abilities in 837 pairs of monozygotic and 1422 pairs of dizygotic 16-year-old twin pairs. Univariate genetic analysis of the twin data revealed that number sense is modestly heritable (32%), with individual differences being largely explained by non-shared environmental influences (68%) and no contribution from shared environmental factors. Sex-Limitation model fitting revealed no differences between males and females in the etiology of individual differences in number sense abilities. We also carried out Genome-wide Complex Trait Analysis (GCTA) that estimates the population variance explained by additive effects of DNA differences among unrelated individuals. For 1118 unrelated individuals in our sample with genotyping information on 1.7 million DNA markers, GCTA estimated zero heritability for number sense, unlike other cognitive abilities in the same twin study where the GCTA heritability estimates were about 25%. The low heritability of number sense, observed in this study, is consistent with the directional selection explanation whereby additive genetic variance for evolutionary important traits is reduced.
The neurophysiology of cells and tissues are monitored electrophysiologically and optically in diverse experiments and species, ranging from flies to humans. Understanding the brain requires integration of data across this diversity, and thus these data must be findable, accessible, interoperable, and reusable (FAIR). This requires a standard language for data and metadata that can coevolve with neuroscience. We describe design and implementation principles for a language for neurophysiology data. Our open-source software (Neurodata Without Borders, NWB) defines and modularizes the interdependent, yet separable, components of a data language. We demonstrate NWB’s impact through unified description of neurophysiology data across diverse modalities and species. NWB exists in an ecosystem, which includes data management, analysis, visualization, and archive tools. Thus, the NWB data language enables reproduction, interchange, and reuse of diverse neurophysiology data. More broadly, the design principles of NWB are generally applicable to enhance discovery across biology through data FAIRness.
The neurophysiology of cells and tissues are monitored electrophysiologically and optically in diverse experiments and species, ranging from flies to humans. Understanding the brain requires integration of data across this diversity, and thus these data must be findable, accessible, interoperable, and reusable (FAIR). This requires a standard language for data and metadata that can coevolve with neuroscience. We describe design and implementation principles for a language for neurophysiology data. Our software (Neurodata Without Borders, NWB) defines and modularizes the interdependent, yet separable, components of a data language. We demonstrate NWB's impact through unified description of neurophysiology data across diverse modalities and species. NWB exists in an ecosystem which includes data management, analysis, visualization, and archive tools. Thus, the NWB data language enables reproduction, interchange, and reuse of diverse neurophysiology data. More broadly, the design principles of NWB are generally applicable to enhance discovery across biology through data FAIRness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.