SUMMARY We examined the effect of turbidity (0.5–14 beam attenuation m–1) and predator attack speed (150 and 296 cm s–1) on escape responses of juvenile cod Gadus morhua in the laboratory. We triggered escape responses using a predator model and measured escape timing, direction and locomotor performance. We also measured responsiveness and estimated the likelihood of fish escaping the`predator attack' (putative escape success, PES). Turbidity affected both PES and the type of escape response used by the fish, but these effects depended on predator speed. PES for the fast predator attack declined from 73% in clear water to 21% in highly turbid water, due to decreased responsiveness and poorly timed escapes. Intermediate turbidity enhanced PES and responsiveness to the slow predator attack. Locomotor performance was reduced by turbidity, whereas predator speed had the opposite effect. Our results suggest that both predator attack speed and turbidity have important roles in determining the vulnerability of fish attacked by piscivorous predators.
Understanding environmental and climatic drivers of natural mortality of marine mammals is critical for managing populations effectively and for predicting responses to climate change. Here we use a 17-year dataset to demonstrate a clear relationship between environmental forcing and natural mortality of inshore marine mammals across a subtropical-tropical coastline spanning a latitudinal gradient of 13° (>2000 km of coastline). Peak mortality of inshore dolphins and dugongs followed sustained periods of elevated freshwater discharge (9 months) and low air temperature (3 months). At a regional scale, these results translated into a strong relationship between annual mortality and an index of El Niño-Southern Oscillation. The number of cyclones crossing the coastline had a comparatively weak effect on inshore marine mammal mortality, and only in the tropics. Natural mortality of offshore/migratory cetaceans was not predicted by freshwater discharge, but was related to lagged air temperature. These results represent the first quantitative link between environmental forcing and marine mammal mortality in the tropics, and form the basis of a predictive tool for managers to prepare responses to periods of elevated marine mammal mortality.
Aim Resource‐selection functions (RSFs) can quantify and predict the density of animal populations across heterogeneous landscapes and are important conservation tools in areas subject to human disturbance. Sandy beach ecosystems have comparatively low habitat heterogeneity and structural relief in the intertidal zone, but intense human use. We aimed to develop predictive RSFs for birds on ocean‐exposed sandy beaches at two spatial scales, 25 ha (local scale) and 250 ha (landscape scale), and to test whether habitat selection of birds that commonly use the surf–beach–dune interface is influenced by the rates of human activities. Location Moreton and North Stradbroke Island, eastern Australia. Methods Avifauna and human activities were mapped on three sandy beaches covering 79 km of coastline for 15 months. Habitat characteristics of the surf–beach–dune interface were derived from remote sensing and ground surveys. RSFs were developed for 12 species of birds at two spatial scales: 25 ha (local scale) and 250 ha (landscape scale). Results At local (25 ha) and landscape scales (250 ha), dune dimensions and the extent and type of vegetation structure were important predictors of bird density. Adding the frequency of human activities improved the predictive power of RSFs, suggesting that habitat selection of birds on beaches is modified by human use of these environments. Human activities occurred mostly in the mid‐ to lower intertidal zone of the beach, overlapping closely with the preferred habitats of Silver Gulls (Larus novaehollandiae), Pied Oystercatchers (Haematopus longirostris), Red‐capped Plovers (Charadrius ruficapillus) and endangered Little Terns (Sternula albifrons). Main conclusions In addition to demonstrating the appropriateness of RSFs to the surf–beach–dune interface, our results stress the need for systematic conservation planning for these ecosystems, where ecological values have traditionally been subsidiary to the maintenance of sand budgets and erosion control.
Resale or republication not permitted without written consent of the publisherDynamic and static habitat traits determine associations of invertebrates on a rocky shore: limpets Cellana tramoserica under a ledge.
Skjæraasen, J. E., Meager, J. J., Karlsen, Ø., Hutchings, J. A., and Fernö, A. 2011. Extreme spawning-site fidelity in Atlantic cod. – ICES Journal of Marine Science, 68: 1472–1477. Based on a 3-year mark-recapture study, evidence is provided of spawning-site fidelity in Atlantic cod (Gadus morhua) at a scale (<1 km) smaller than documented previously. Coastal regions where barriers to dispersal exist may allow for local population dynamics and adaptation to develop in broadcast-spawning marine fish at extremely fine spatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.