Aims Type 2 diabetes (T2D) is a global health problem that will be diagnosed in almost 300 million people by 2025 according to the World Health Organization. Before being diagnosed with T2D, individuals may have glucose levels above normal but below the diabetic range. This condition is known as prediabetes. Studies showed that people with prediabetes had an increase in several pro‐inflammatory cytokines in their serum and in their fasting glucose levels. The answer remains unclear when inflammation begins in the pancreas and islets, and what is the extent of this inflammation. Methods Subjects with haemoglobin A1c levels from 5.7% to 6.4% were classified as pre‐diabetic. Sections of pancreas and isolated islets from normal donors and donors with prediabetes were tested for markers of inflammation and glucose‐stimulated insulin secretion (GSIS). Results Gene and protein expression of the inflammatory markers resistin, interleukin‐1 beta, tumour necrosis factor‐alpha, interleukin‐6, and monocyte chemoattractant protein‐1 increased in donors with prediabetes compared to normal donors. GSIS response was significantly decreased in pre‐diabetic islets compared to normal islets. Donors with prediabetes also had decreased expression of CD163+ cells but not CD68+ cells. Conclusions Based on our findings, inflammation and islet dysfunction may be more significant than originally thought in people with prediabetes. Rather than being in a normal state before diabetes occurs, it appears that subjects are already in an early diabetic condition resembling more closely T2D.
Three-dimensional bioprinted culture platforms mimic the native microenvironment of tissues more accurately than two-dimensional cell cultures or animal models. Scaffold-free bioprinting eliminates many complications associated with traditional scaffold-dependent printing as well as provides better cell-to-cell interactions and long-term functionality. In this study, constructs were produced from bone marrow derived mesenchymal stem cells (BM-MSCs) using a scaffold-free bioprinter. These constructs were cultured in either osteogenic, chondrogenic, a 50:50 mixture of osteogenic and chondrogenic (‘osteo-chondro’), or BM-MSC growth medium. Osteogenic and chondrogenic differentiation capacity was determined over an 8-week culture period using histological and immunohistochemical staining and RT-qPCR (Phase I). After 6 weeks in culture, individual osteogenic and chondrogenic differentiated constructs were adhered to create a bone-cartilage interaction model. Adhered differentiated constructs were cultured for an additional 8 weeks in either chondrogenic or osteo-chondro medium to evaluate sustainability of lineage specification and transdifferentiation potential (Phase II). Constructs cultured in their respective osteogenic and/or chondrogenic medium differentiated directly into bone (model of intramembranous ossification) or cartilage. Positive histological and immunohistochemical staining for bone or cartilage identification was shown after 4 and 8 weeks in culture. Expression of osteogenesis and chondrogenesis associated genes increased between weeks 2 and 6. Adhered individual osteogenic and chondrogenic differentiated constructs sustained their differentiated phenotype when cultured in chondrogenic medium. However, adhered individual chondrogenic differentiated constructs cultured in osteo-chondro medium were converted to bone (model of metaplastic transformation). These bioprinted models of bone-cartilage interaction, intramembranous ossification, and metaplastic transformation of cartilage into bone offer a useful and promising approach for bone and cartilage tissue engineering research. Specifically, these models can be potentially used as functional tissue systems for studying osteochondral defect repair, drug discovery and response, and many other potential applications.
Human pluripotent stem cells (hPSCs) hold great promise for future applications in drug discovery and cell therapies. hPSC culture protocols require specific substrates and medium supplements to support cell expansion and lineage specific differentiation. The animal origin of these substrates is a severe limitation when considering the translation of hPSC derivatives to the clinic and in vitro disease modeling. The present study evaluates the use of a human placenta-derived extracellular matrix (ECM) hydrogel, HuGentra Ⓡ , to support tri-lineage differentiation of human induced pluripotent stem cells (hiPSCs). Lineage-specific embryoid bodies (EBs) were plated onto three separate matrices, and differentiation efficiency was evaluated based on morphology, protein, and gene expression. HuGentra was found to support the differentiation of hiPSCs to all three germ layers: ectodermal, mesodermal, and endodermal lineages. hiPSCs differentiated into neurons, cardiomyocytes, and hepatocytes on HuGentra had similar morphology, protein, and gene expression compared to differentiation on Matrigel or other cell preferred matrices. HuGentra can be considered as a suitable human substrate for hiPSC differentiation.
Metabolic bone disease affects hundreds of millions of people worldwide, and as a result, in vitro models of bone tissue have become essential tools to help analyze bone pathogenesis, develop drug screening, and test potential therapeutic strategies. Drugs that either promote or impair bone formation are in high demand for the treatment of metabolic bone diseases. These drugs work by targeting numerous signaling pathways responsible for regulating osteogenesis such as Hedgehog, Wnt/β-catenin, and PI3K-AKT. In this study, differentiated bone marrow-derived mesenchymal stem cell (BM-MSC) scaffold-free 3D bioprinted constructs and 2D monolayer cultures were utilized to screen four drugs predicted to either promote (Icariin and Purmorphamine) or impair osteogenesis (PD98059 and U0126). Osteogenic differentiation capacity was analyzed over a four week culture period by evaluating mineralization, alkaline phosphatase (ALP) activity, and osteogenesis related gene expression. Responses to drug treatment were observed in both 3D differentiated constructs and 2D monolayer cultures. After four weeks in culture, 3D differentiated constructs and 2D monolayer cultures treated with Icariin or Purmorphamine showed increased mineralization, ALP activity, and the gene expression of bone formation markers (BGLAP, SSP1, and COL1A1), signaling molecules (MAPK1, WNT1, and AKT1), and transcription factors (RUNX2 and GLI1) that regulate osteogenic differentiation relative to untreated. 3D differentiated constructs and 2D monolayer cultures treated with PD98059 or U0126 showed decreased mineralization, ALP activity, and the expression of the aforementioned genes BGLAP, SPP1, COL1A1, MAPK1, AKT1, RUNX2, and GLI1 relative to untreated. Differences in ALP activity and osteogenesis related gene expression relative to untreated cells cultured in a 2D monolayer were greater in 3D constructs compared to 2D monolayer cultures. These findings suggest that our bioprinted bone model system offers a more sensitive, biologically relevant drug screening platform than traditional 2D monolayer in vitro testing platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.