Er:glass lasers have been in operation with both long pulses (hundreds of microseconds) and Q-switched pulses (50 to 100 ns) for more than 35 yr. The ocular hazards of this laser were reported early, and it was determined that damage to the eye from the 1.54-microm wavelength occurred mainly in the cornea where light from this wavelength is highly absorbed. Research on skin hazards has been reported only in the past few years because of limited pulse energies from these lasers. Currently, however, with pulse energies in the hundreds of joules, these lasers may be hazardous to the skin in addition to being eye hazards. We report our minimum visible lesion (MVL) threshold measurements for two different pulse durations and three different spot sizes for the 1.54-microm wavelength using porcine skin as an in vivo model. We also compare our measurements to results from our model, based on the heat transfer equation and the rate process equation. Our MVL-ED50 thresholds for the long pulse (600 micros) at 24 h postexposure were measured to be 20, 8.1, and 7.4 J cm(-2) for spot diameters of 0.7, 1.0, and 5 mm, respectively. Q-switched laser pulses of 31 ns had lower ED50 (estimated dose for a 50% probability of laser-induced damage) thresholds of 6.1 J cm(-2) for a 5-mm-diam, top-hat spatial profile laser pulse.
A very high energy Q-switched Er-glass laser is reported. We incorporated a rotating, resonant mirror/Porro-cavity reflector optical arrangement to achieve very high shutter speeds on the cavity Q of a laser designed for energetic, flashlamp-pumped, 600-µs, 1540-nm pulses. Reproducible 3.75-J, 35-ns, 1533-nm laser pulses were obtained at a repetition rate less than 1 minute. Our work shows that reliable, very high energy, Q-switched, Er-glass laser pulses at 1533 nm can be generated mechanically with no apparent damage to laser cavity components. We demonstrate the applications of this "eye safe" wavelength to energetic processes such as LIBS and materials processing. The laser could also serve as a new tool for bioeffects studies and targeting applications.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
An assessment of skin damage caused by near-IR laser exposures is reported. The damage from two distinct laser-tissue temporal regimes is compared at two wavelengths (1.3 µm and 1.5 µm). Skin damage caused by thermal effects from single laser pulses is compared to damage caused by LIB (laser induced breakdown) using histological examinations. Modeling applications are explored to determine crossover points between thermal and photomechanical damage thresholds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.