Bacterial ribonuclease P (RNase P), an endonuclease involved in tRNA maturation, is a ribonucleoprotein containing a catalytic RNA. The secondary structure of this ribozyme is well established, but comparatively little is understood about its 3‐D structure. In this analysis, orientation and distance constraints between elements within the Escherichia coli RNase P RNA‐pre‐tRNA complex were determined by intra‐ and intermolecular crosslinking experiments. A molecular mechanics‐based RNA structure refinement protocol was used to incorporate the distance constraints indicated by crosslinking, along with the known secondary structure of RNase P RNA and the tertiary structure of tRNA, into molecular models. Seven different structures that satisfy the constraints equally well were generated and compared by superposition to estimate helix positions and orientations. Manual refinement within the range of conformations indicated by the molecular mechanics analysis was used to derive a model of RNase P RNA with bound substrate pre‐tRNA that is consistent with the crosslinking results and the available phylogenetic comparisons.
The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity and the diversity generally observed within all groups of interrelated dsDNA microbial genomes in nature.
Regions of Escherichia coli ribonuclease P (RNase P) RNA in proximity to a bound transfer RNA (tRNA) substrate were mapped by photoaffinity. A photoaffinity cross-linking reagent was introduced at specific sites in the interior of the native tRNA structure by modification of the 5' ends of circularly permuted tRNAs (cptRNAs). The polymerase chain reaction was used for the production of cptRNA templates. After the amplification of a segment of a tandemly duplicated tRNA gene, the cptRNA gene was transcribed in vitro to produce cptRNA. Modified cptRNAs were cross-linked to RNase P RNA, and the conjugation sites in RNase P RNA were determined by primer extension. These sites occur in phylogenetically conserved structures and sequences and identify regions of the ribozyme that form part of the tRNA binding site. The use of circularly permuted molecules to position specific modifications is applicable to the study of many inter- and intramolecular interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.