Stockpile quantity monitoring is vital for agencies and businesses to maintain inventory of bulk material such as salt, sand, aggregate, lime, and many other materials commonly used in agriculture, highways, and industrial applications. Traditional approaches for volumetric assessment of bulk material stockpiles, e.g., truckload counting, are inaccurate and prone to cumulative errors over long time. Modern aerial and terrestrial remote sensing platforms equipped with camera and/or light detection and ranging (LiDAR) units have been increasingly popular for conducting high-fidelity geometric measurements. Current use of these sensing technologies for stockpile volume estimation is impacted by environmental conditions such as lack of global navigation satellite system (GNSS) signals, poor lighting, and/or featureless surfaces. This study addresses these limitations through a new mapping platform denoted as Stockpile Monitoring and Reporting Technology (SMART), which is designed and integrated as a time-efficient, cost-effective stockpile monitoring solution. The novel mapping framework is realized through camera and LiDAR data-fusion that facilitates stockpile volume estimation in challenging environmental conditions. LiDAR point clouds are derived through a sequence of data collections from different scans. In order to handle the sparse nature of the collected data at a given scan, an automated image-aided LiDAR coarse registration technique is developed followed by a new segmentation approach to derive features, which are used for fine registration. The resulting 3D point cloud is subsequently used for accurate volume estimation. Field surveys were conducted on stockpiles of varying size and shape complexity. Independent assessment of stockpile volume using terrestrial laser scanners (TLS) shows that the developed framework had close to 1% relative error.
There are over four million miles of roads in the United States, and the prioritization of locations to perform maintenance activities typically relies on human inspection or semi-automated dedicated vehicles. Pavement markings are used to delineate the boundaries of the lane the vehicle is driving within. These markings are also used by original equipment manufacturers (OEM) for implementing advanced safety features such as lane keep assist (LKA) and eventually autonomous operation. However, pavement markings deteriorate over time due to the fact of weather and wear from tires and snowplow operations. Furthermore, their performance varies depending upon lighting (day/night) as well as surface conditions (wet/dry). This paper presents a case study in Indiana where over 5000 miles of interstate were driven and LKA was used to classify pavement markings. Longitudinal comparisons between 2020 and 2021 showed that the percentage of lanes with both lines detected increased from 80.2% to 92.3%. This information can be used for various applications such as developing or updating standards for pavement marking materials (infrastructure), quantifying performance measures that can be used by automotive OEMs to warn drivers of potential problems with identifying pavement markings, and prioritizing agency pavement marking maintenance activities.
Back of queue crashes on Interstates are a major concern for all state transportation departments. In 2020, Indiana DOT begin deploying queue warning trucks with message boards, flashers and digital alerts that could be transmitted to navigation systems such as Waze. This study reports on the deployment and impact evaluation of digital alerts on motorist's assistance patrols and 19 Queue trucks in Indiana. The motorist assistance patrol evaluation is provided qualitatively. A novel analysis of queue warning trucks equipped with digital alerts was conducted during the months of May-July in 2021 using connected vehicle data. This new data set reports locations of anonymous hard-braking events from connected vehicles on the Interstate. Hard-braking events were tabulated for when queueing occurred with and without the presence of a queue warning truck. Approximately 370 hours of queueing with queue trucks present and 58 hours of queueing without queue trucks present were evaluated. Hard-braking events were found to decrease approximately 80% when queue warning trucks were used to alert motorists of impending queues.
Transportation agencies in northern environments spend a considerable amount of their budget on salt for winter operations. For example, in the state of Indiana, there are approximately 140 salt storage facilities distributed throughout the state and the state expends between USD 30 M and USD 60 M on inventory and delivery each year. Historical techniques of relying on visual estimates of salt stockpiles can be inaccurate and do not scale well for managing the supply chain during the winter or planning for re-supply during summer months. This paper describes the implementation of a portable pole mounted LiDAR system that can be used to inventory a large barn in under 15 min and describes how this system has been deployed over 90 times at 30 facilities. A quick and easy accuracy test, based upon conservation of volume, was used to provide an independent check on the system performance by repositioning portions of the salt pile. Those tests indicated stockpile volumes can be estimated with an accuracy of approximately 0.1%. The paper concludes by discussing how this technology can be permanently installed near the roof for systematic monitoring throughout the year.
The United States has over 8.8 million lane miles nationwide, which require regular maintenance and evaluations of sign retroreflectivity, pavement markings, and other pavement information. Pavement markings convey crucial information to drivers as well as connected and autonomous vehicles for lane delineations. Current means of evaluation are by human inspection or semi-automated dedicated vehicles, which often capture one to two pavement lines at a time. Mobile LiDAR is also frequently used by agencies to map signs and infrastructure as well as assess pavement conditions and drainage profiles. This paper presents a case study where over 70 miles of US-52 and US-41 in Indiana were assessed, utilizing both a mobile retroreflectometer and a LiDAR mobile mapping system. Comparing the intensity data from LiDAR data and the retroreflective readings, there was a linear correlation for right edge pavement markings with an R2 of 0.87 and for the center skip line a linear correlation with an R2 of 0.63. The p-values were 0.000 and 0.000, respectively. Although there are no published standards for using LiDAR to evaluate pavement marking retroreflectivity, these results suggest that mobile LiDAR is a viable tool for network level monitoring of retroreflectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.