Stockpile quantity monitoring is vital for agencies and businesses to maintain inventory of bulk material such as salt, sand, aggregate, lime, and many other materials commonly used in agriculture, highways, and industrial applications. Traditional approaches for volumetric assessment of bulk material stockpiles, e.g., truckload counting, are inaccurate and prone to cumulative errors over long time. Modern aerial and terrestrial remote sensing platforms equipped with camera and/or light detection and ranging (LiDAR) units have been increasingly popular for conducting high-fidelity geometric measurements. Current use of these sensing technologies for stockpile volume estimation is impacted by environmental conditions such as lack of global navigation satellite system (GNSS) signals, poor lighting, and/or featureless surfaces. This study addresses these limitations through a new mapping platform denoted as Stockpile Monitoring and Reporting Technology (SMART), which is designed and integrated as a time-efficient, cost-effective stockpile monitoring solution. The novel mapping framework is realized through camera and LiDAR data-fusion that facilitates stockpile volume estimation in challenging environmental conditions. LiDAR point clouds are derived through a sequence of data collections from different scans. In order to handle the sparse nature of the collected data at a given scan, an automated image-aided LiDAR coarse registration technique is developed followed by a new segmentation approach to derive features, which are used for fine registration. The resulting 3D point cloud is subsequently used for accurate volume estimation. Field surveys were conducted on stockpiles of varying size and shape complexity. Independent assessment of stockpile volume using terrestrial laser scanners (TLS) shows that the developed framework had close to 1% relative error.
Maintenance of roadside ditches is important to avoid localized flooding and premature failure of pavements. Scheduling effective preventative maintenance requires a reasonably detailed mapping of the ditch profile to identify areas in need of excavation to remove long-term sediment accumulation. This study utilizes high-resolution, high-quality point clouds collected by mobile LiDAR mapping systems (MLMS) for mapping roadside ditches and performing hydrological analyses. The performance of alternative MLMS units, including an unmanned aerial vehicle, an unmanned ground vehicle, a portable backpack system along with its vehicle-mounted version, a medium-grade wheel-based system, and a high-grade wheel-based system, is evaluated. Point clouds from all the MLMS units are in agreement within the ±3 cm range for solid surfaces and ±7 cm range for vegetated areas along the vertical direction. The portable backpack system that could be carried by a surveyor or mounted on a vehicle is found to be the most cost-effective method for mapping roadside ditches, followed by the medium-grade wheel-based system. Furthermore, a framework for ditch line characterization is proposed and tested using datasets acquired by the medium-grade wheel-based and vehicle-mounted portable systems over a state highway. An existing ground-filtering approach—cloth simulation—is modified to handle variations in point density of mobile LiDAR data. Hydrological analyses, including flow direction and flow accumulation, are applied to extract the drainage network from the digital terrain model (DTM). Cross-sectional/longitudinal profiles of the ditch are automatically extracted from the LiDAR data and visualized in 3D point clouds and 2D images. The slope derived from the LiDAR data turned out to be very close to the highway cross slope design standards of 2% on driving lanes, 4% on shoulders, and a 6-by-1 slope for ditch lines.
This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (DDWI). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a >99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide.
Transportation agencies in northern environments spend a considerable amount of their budget on salt for winter operations. For example, in the state of Indiana, there are approximately 140 salt storage facilities distributed throughout the state and the state expends between USD 30 M and USD 60 M on inventory and delivery each year. Historical techniques of relying on visual estimates of salt stockpiles can be inaccurate and do not scale well for managing the supply chain during the winter or planning for re-supply during summer months. This paper describes the implementation of a portable pole mounted LiDAR system that can be used to inventory a large barn in under 15 min and describes how this system has been deployed over 90 times at 30 facilities. A quick and easy accuracy test, based upon conservation of volume, was used to provide an independent check on the system performance by repositioning portions of the salt pile. Those tests indicated stockpile volumes can be estimated with an accuracy of approximately 0.1%. The paper concludes by discussing how this technology can be permanently installed near the roof for systematic monitoring throughout the year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.