bBacillus anthracis, the causative agent of anthrax, replicates as chains of vegetative cells by regulating the separation of septal peptidoglycan. Surface (S)-layer proteins and associated proteins (BSLs) function as chain length determinants and bind to the secondary cell wall polysaccharide (SCWP). In this study, we identified the B. anthracis lcpD mutant, which displays increased chain length and S-layer assembly defects due to diminished SCWP attachment to peptidoglycan. In contrast, the B. anthracis lcpB3 variant displayed reduced cell size and chain length, which could be attributed to increased deposition of BSLs. In other bacteria, LytR-CpsA-Psr (LCP) proteins attach wall teichoic acid (WTA) and polysaccharide capsule to peptidoglycan. B. anthracis does not synthesize these polymers, yet its genome encodes six LCP homologues, which, when expressed in S. aureus, promote WTA attachment. We propose a model whereby B. anthracis LCPs promote attachment of SCWP precursors to discrete locations in the peptidoglycan, enabling BSL assembly and regulated separation of septal peptidoglycan. Bacillus anthracis, the causative agent of anthrax, is a sporeforming, Gram-positive bacterium that germinates in host infected tissues and replicates as elongated chains of vegetative forms (1, 2). This unique growth pattern appears to be caused by the regulated separation of septal peptidoglycan, which generates bacterial chains whose mere size precludes clearance by host phagocytes (3-5). The genetic determinants for B. anthracis chain formation are conserved among pathogenic species of the Bacillus cereus group and, as demonstrated with B. cereus G9241, likely contribute to disease pathogenesis (6, 7). Hallmarks of pathogenic Bacillus species are virulence plasmids, pXO-1 and pXO-2 in B. anthracis (8, 9), providing for toxin production and capsulation (10, 11) as well as the chromosomally encoded surface (S)-layer locus (12). Two S-layer proteins of B. anthracis, Sap and EA1, are endowed with S-layer homology (SLH) domains, which retain these proteins in the bacterial envelope by binding to the secondary cell wall polysaccharide (SCWP) (13-15). S-layer protein crystallization domains, responsible for the spontaneous assembly of these polypeptides into a paracrystalline array (16), form a twodimensional lattice that can be thought of as bacterial integument (17)(18)(19).The structural genes of S-layer proteins, sap and eag, are flanked by genes encoding determinants for S-layer protein secretion (secA2 and slaP) (12) or pyruvylation (csaB) (14) as well as acetylation of the SCWP (patA1/2 and patB1/2) (20). CsaB-mediated pyruvylation of the terminal N-acetylmannosamine (ManNAc) of the SCWP (21), with the repeat struc- (22), is a prerequisite for the assembly of S-layer proteins and 22 B. anthracis S-layer-associated proteins (BSLs) (14). PatAB1/2-mediated acetylation of SCWP molecules affects the assembly of EA1 and of some but not all BSLs (20). Recent studies have begun to identify genes for SCWP synthesis, which, unlike py...
The envelope of Bacillus anthracis encompasses a proteinaceous S-layer with two S-layer proteins (Sap and EA1). Protein assembly in the envelope of B. anthracis requires S-layer homology domains (SLH) within S-layer proteins and S-layer-associated proteins (BSLs), which associate with the secondary cell wall polysaccharide (SCWP), an acetylated carbohydrate that is tethered to peptidoglycan. Here, we investigated the contributions of two putative acetyltransferases, PatA1 and PatA2, on SCWP acetylation and S-layer assembly. We show that mutations in patA1 and patA2 affect the chain lengths of B. anthracis vegetative forms and perturb the deposition of the BslO murein hydrolase at cell division septa. The patA1 and patA2 mutants are defective for the assembly of EA1 in the envelope but retain the ability of S-layer formation with Sap. SCWP isolated from the patA1 patA2 mutant lacked acetyl moieties identified in wild-type polysaccharide and failed to associate with the SLH domains of EA1. A model is discussed whereby patA1-and patA2-mediated acetylation of SCWP enables the deposition of EA1 as well as BslO near the septal region of the B. anthracis envelope.
Bacillus cereus G9241, the causative agent of anthrax-like disease, harbors virulence plasmids encoding anthrax toxins as well as hyaluronic acid (HA) and B. cereus exopolysaccharide (BPS) capsules. B. cereus G9241 also harbors S-layer genes, including homologs of Bacillus anthracis surface array protein (Sap), extractable antigen 1 (EA1), and the S-layer-associated proteins (BSLs). In B. anthracis, S-layer proteins and BSLs attach via their S-layer homology domains (SLH) to the secondary cell wall polysaccharide (SCWP) in a manner requiring csaB, a predicted ketalpyruvate transferase. Here we used a genetic approach to analyze B. cereus G9241 S-layer assembly and function. Variants lacking the csaB gene synthesized SCWP but failed to retain Sap, EA1, and BSLs in the bacterial envelope. The B. cereus G9241 csaB mutant assembled capsular polysaccharides but displayed an increase in chain length relative to the wild-type strain. This phenotype is likely due to its inability to deposit BslO murein hydrolase at divisional septa. During growth under capsule-inducing conditions, B. cereus G9241 assembled BSLs (BslA and BslO) and the Sap S-layer protein, but not EA1, in the envelope. Finally, csaB-mediated assembly of S-layer proteins and BSLs in B. cereus G9241 contributes to the pathogenesis of anthrax-like disease in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.