More efficient image-compression codecs are an emerging requirement for spacecraft because increasingly complex, onboard image sensors can rapidly saturate downlink bandwidth of communication transceivers. While these codecs reduce transmitted data volume, many are compute-intensive and require rapid processing to sustain sensor data rates. Emerging nextgeneration small satellite (SmallSat) computers provide compelling computational capability to enable more onboard processing and compression than previously considered. For this research, we apply two compression algorithms for deployment on modern flight hardware: (1) end-to-end, neural-network-based, image compression (CNN-JPEG); and (2) adaptive image compression through feature-point detection (FPD-JPEG). These algorithms rely on intelligent data-processing pipelines that adapt to sensor data to compress it more effectively, ensuring efficient use of limited downlink bandwidths. The first algorithm, CNN-JPEG, employs a hybrid approach adapted from literature combining convolutional neural networks (CNNs) and JPEG; however, we modify and tune the training scheme for satellite imagery to account for observed training instabilities. This hybrid CNN-JPEG approach shows 23.5% better average peak signal-to-noise ratio (PSNR) and 33.5% better average structural similarity index (SSIM) versus standard JPEG on a dataset collected on the Space Test Program -Houston 5 (STP-H5-CSP) mission onboard the International Space Station (ISS). For our second algorithm, we developed a novel adaptive image-compression pipeline based upon JPEG that leverages the Oriented FAST and Rotated BRIEF (ORB) featurepoint detection algorithm to adaptively tune the compression ratio to allow for a tradeoff between v PSNR/SSIM and combined file size over a batch of STP-H5-CSP images. We achieve a less than 1% drop in average PSNR and SSIM while reducing the combined file size by 29.6% compared to JPEG using a static quality factor (QF) of 90.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.