This article proposes a Built-In Self-Test (BIST) method to accurately measure the combinatorial circuit delays on an FPGA. The flexibility of the on-chip clock generation capability found in modern FPGAs is employed to step through a range of frequencies until timing failure in the combinatorial circuit is detected. In this way, the delay of any combinatorial circuit can be determined with a timing resolution of the order of picoseconds. Parallel and optimized implementations of the method for self-characterization of the delay of all the LUTs on an FPGA are also proposed. The method was applied to Altera Cyclone II and III FPGAs . A complete self-characterization of LUTs on a Cyclone II was achieved in 2.5 seconds, utilizing only 13kbit of block RAM to store the results. More extensive tests were carried out on the Cyclone III and the delays of adder circuits and embedded multiplier blocks were successfully measured. This self-measurement method paves the way for matching timing requirements in designs to FPGAs as a means of combating the problem of process variations.
Significance
Characterizing blood flow by tracking individual red blood cells as they move through vessels is essential for understanding vascular function. With high spatial resolution, two-photon fluorescence microscopy is the method of choice for imaging blood flow at the cellular level. However, its application is limited to a low flow speed regimen in anesthetized animals by its slow focus scanning mechanism. Using an ultrafast scanning module, we demonstrated two-photon fluorescence imaging of blood flow at 1,000 two-dimensional frames and 1,000,000 one-dimensional line scans per second in the brains of awake mice. These ultrafast measurements enabled us to study hemodynamic and fluid mechanical regimens beyond the reach of conventional methods.
This paper proposes a built-in self-test (BIST) method to measure accurately the combinatorial circuit delays on an FPGA. The flexibility of the on-chip clock generation capability found in modern FPGAs is employed to step through a range of frequencies until timing failure in the combinatorial circuit is detected. In this way, the delay of any combinatorial circuit can be determined with a timing resolution of lps or lower. A parallel implementation of the method for self-characterization of the delay of all the LUTs on an FPGA is also proposed. The method was applied to an Altera Cyclone-IT FPGA (EP2C35).A complete self-characterization was achieved in 3 seconds, utilizing only 13kbit of block RAM to store the results. This self-characterization method paves the way for matching timing requirements in designs to FPGAs as a means of combating the problem of process variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.