Tubular enzymuria on admission to the ICU is useful in predicting ARF. The cheapness and wide availability of automated assays for gamma GT and AP suggests that estimation of these enzymes in random urine samples may be particularly useful for identifying patients at high risk of ARF.
We performed a double-blind placebo-controlled trial to study whether early treatment with erythropoietin could prevent the development of acute kidney injury in patients in two general intensive care units. As a guide for choosing the patients for treatment we measured urinary levels of two biomarkers, the proximal tubular brush border enzymes gamma-glutamyl transpeptidase and alkaline phosphatase. Randomization to either placebo or two doses of erythropoietin was triggered by an increase in the biomarker concentration product to levels above 46.3, with a primary outcome of relative average plasma creatinine increase from baseline over 4 to 7 days. Of 529 patients, 162 were randomized within an average of 3.5 h of a positive sample. There was no difference in the incidence of erythropoietin-specific adverse events or in the primary outcome between the placebo and treatment groups. The triggering biomarker concentration product selected patients with more severe illness and at greater risk of acute kidney injury, dialysis, or death; however, the marker elevations were transient. Early intervention with high-dose erythropoietin was safe but did not alter the outcome. Although these two urine biomarkers facilitated our early intervention, their transient increase compromised effective triaging. Further, our study showed that a composite of these two biomarkers was insufficient for risk stratification in a patient population with a heterogeneous onset of injury.
IntroductionTo evaluate the utility of urinary cystatin C (uCysC) as a diagnostic marker of acute kidney injury (AKI) and sepsis, and predictor of mortality in critically ill patients.MethodsThis was a two-center, prospective AKI observational study and post hoc sepsis subgroup analysis of 444 general intensive care unit (ICU) patients. uCysC and plasma creatinine were measured at entry to the ICU. AKI was defined as a 50% or 0.3-mg/dL increase in plasma creatinine above baseline. Sepsis was defined clinically. Mortality data were collected up to 30 days. The diagnostic and predictive performances of uCysC were assessed from the area under the receiver operator characteristic curve (AUC) and the odds ratio (OR). Multivariate logistic regression was used to adjust for covariates.ResultsEighty-one (18%) patients had sepsis, 198 (45%) had AKI, and 64 (14%) died within 30 days. AUCs for diagnosis by using uCysC were as follows: sepsis, 0.80, (95% confidence interval (CI), 0.74 to 0.87); AKI, 0.70 (CI, 0.64 to 0.75); and death within 30 days, 0.64 (CI, 0.56 to 0.72). After adjustment for covariates, uCysC remained independently associated with sepsis, AKI, and mortality with odds ratios (CI) of 3.43 (2.46 to 4.78), 1.49 (1.14 to 1.95), and 1.60 (1.16 to 2.21), respectively. Concentrations of uCysC were significantly higher in the presence of sepsis (P < 0.0001) or AKI (P < 0.0001). No interaction was found between sepsis and AKI on the uCysC concentrations (P = 0.53).ConclusionsUrinary cystatin C was independently associated with AKI, sepsis, and death within 30 days.Trial registrationAustralian New Zealand Clinical Trials Registry ACTRN012606000032550.
This study suggests that a single-dose protocol of Clexane is an effective and very convenient alternative to sodium heparin, but currently direct costs are about 16% more. We recommend an initial dose of 0.70 mg/kg.
BackgroundPhase III clinical studies have confirmed that enoxaparin is superior to standard heparin in reducing the rate of recurrent ischaemic events in patients with non-ST elevation acute coronary syndromes. Patients with moderate to severe renal impairment were, however, excluded from these studies. Due to the hydrophilic disposition of enoxaparin, accumulation is likely in patients with renal dysfunction, thereby increasing the risk of haemorrhagic complications if standard weight adjusted treatment doses are used. Arbitrary dose reduction has been repor ted to increase the risk of ischaemic events, presumably due to inadequate enoxaparin concentrations. AimThe aims of this study were to investigate the influence of glomerular filtration rate (GFR) on the pharmacokinetics of subcutaneously administered enoxaparin, and to develop a practical dosing algorithm in renal impairment that can easily be used at the bedside. MethodsThirty-eight patients, median age 78 years (range 44-87), mean GFR 32 ml min -1 (range 16-117) and mean weight 69 kg (range 32-95), presenting with acute coronary syndrome were recruited into the study. Approximately 10 anti-Xa concentrations were taken per patient over their period of therapy. A population pharmacokinetic model was developed using non linear mixed effects modelling techniques, utilizing the software NONMEM. Stochastic simulations were performed to identify the most suitable dosing regimen. ResultsThree hundred and thirteen anti-Xa concentrations were collected. A two compar tment, first order input model was identified as the best baseline model. Covariates found to improve model fitting were GFR as a linear function on clearance (CL) and weight as a linear function on the central volume compartment (V c ). The fraction of drug excreted unchanged ( F u ) was estimated at 71%. CL and V c from the final covariate model were estimated as; CL (l h -1 ) = 0.681 per 4.8 l hr -1 (GFR) + 0.229 V c (l) = 5.22 per 80 kg (total body weight) Correspondence Bruce Green,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.