In this study, a phosphate solubilizing microorganism was isolated from the soil of an agricultural field in Lithuania. Based on 16S rRNA gene sequence analysis, the strain was identified as Bacillus sp. and submitted to the NCBI database, Sector of Applied Bio-catalysis, University Institute of Biotechnology, Vilnius, Lithuania and allocated the accession number KY882273. The Bacillus sp. was assigned with the number MVY-004. The culture nutrient medium and growth conditions were optimized: molasses was used as a carbon source; yeast extract powder was used as an organic source; NH4H2PO4 was used as a nitrogen source; the culture growth temperature was 30 ± 0.5 °C; the initial value of pH was 7.0 ± 0.5; the partial pressure of oxygen (pO2) was 60 ± 2.0; the mixer revolutions per minute (RPM) were 25–850, and the incubation and the fermentation time was 48–50 h. Analysis using Liquid Chromatography Time-of-Flight Mass Spectrometry (LC-TOF/MS) results showed that Bacillus sp. MVY-004 produced organic acids such as citric, succinic, 2-ketogluconic, gluconic, malic, lactic, and oxalic acids. Furthermore, the experiment showed that Bacillus sp. MVY-004 can also produce the following phytohormones: indole-3-acetic (IAA), jasmonic (JA), and gibberellic (GA3) acids. In the climate chamber, the experiment was performed using mineral fertilizer (NPS-12:40:10 80 Kg ha−1) and mineral fertilizers in combination with Bacillus sp. MVY-004 cells (NPS-12:40:10 80 Kg ha−1 + Bacillus sp. MVY-004) in loamy soil. Analysis was performed in three climate conditions: normal (T = 20 °C; relative humidity 60%); hot and dry (T = 30 °C; relative humidity 30%); hot and humid (T = 30 °C; relative humidity 80%).
In this study, thirteen isolates, which were possibly expected to fix nitrogen, were isolated from soil and pea root nodules and identified by the gene analysis of 16S rDNA sequences. Two of these isolates that were able to form endospores and grow on nitrogen-free media were selected for spring wheat development research. The isolate Paenibacillus sp. S7 identified as Paenibacillus polymyxa was found to significantly increase the amount of ammonium and mineral N amounts in the soil. Furthermore, increased nitrogen accumulation in grains and a chlorophyll index were obtained after wheat treatment. Paenibacillus sp. S7 isolate was selected for further studies and the accession number MT900581 and strain name MVY-024 in NCBI nucleotide bank for this isolate were assigned. During the cultivation of Paenibacillus sp. MVY-024, sugarcane molasses and a yeast extract were determined as the most suitable carbon and nitrogen sources, whose optimal concentrations were 100 g L−1 and 10 g L−1, respectively. The optimal pH range for the cell culture was between 6.5 and 7.0, and the optimal air flow rate was 0.4 vvm. It was found that the air flow has an effect on biomass production and endospore formation. After Paenibacillus sp. MVY-024 biomass cultivation optimization, the cultured cell number was, on average, 2.2 × 109 cfu m L−1.
In this study, thirteen isolates which were possibly expected to fix nitrogen, were isolated from the soil and pea root nodules and identified by gene analysis of 16S rDNA sequences. Two of these isolates which were able to form endospores and growth on nitrogen free media were selected for spring wheat development research. The isolate Paenibacillus sp. S7 identified as Paenibacillus polymyxa was found to significantly increased amount of ammonium and mineral N amounts in the soil. Furthermore, increased nitrogen accumulation in grain and a chlorophyll index were obtained after wheat treatment. Paenibacillus sp. S7 isolate was selected for further studies and accession number MT900581 and strain name MVY-024 in NCBI nucleotide bank for this isolate was assigned. During cultivation of Paenibacillus sp. MVY-024, sugarcane molasses and yeast extract were determined as the most suitable carbon and nitrogen sources, optimal concentrations were 100 gL-1 and 10 gL-1, respectively. The optimal pH range for cells culturing was between 6.5 and 7.0, optimal air flow rate was 0.4 vvm. It was found that air flow has effect for biomass production and cells endospores formation. After Paenibacillus sp. MVY-024 biomass cultivation optimization, cultured cells number was on average 2.2 × 109 cfu mL-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.