We present modifications of the ADEQUATE experiment which more than double the sensitivity of the carbon-carbon correlations of 13CH–13CH moieties. Additionally, these improvements can be applied without a sensitivity penalty...
Applications for direct breath analysis by mass spectrometry are rapidly expanding. One of the more recent mass spectrometry-based approaches is secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS). Despite increasing usage, the SESI methodology still lacks standardization procedures for quality control and absolute quantification. In this study, we designed and evaluated a custom-built standard delivery system tailored for direct breath analysis. The system enables the simultaneous introduction of multiple gas-phase standard compounds into ambient MS setups in the lower parts-per-million (ppm) to parts-per-billion (ppb) range. To best mimic exhaled breath, the gas flow can be heated (37-40°C) and humidified (up to 99% relative humidity). Inter-laboratory comparison of the system included various SESI-HRMS setups, i.e., an Orbitrap and a quadrupole time-of-flight mass spectrometer (QTOF), and using both single- as well as multi-component standards. This revealed highly stable and reproducible performances with between-run variation < 19% and within-run variation < 20%. Independent calibration runs demonstrated high accuracy (96-111%) and precision (> 95%) for the single-compound standard acetone, while compound-specific performances were obtained for the multi-component standard. Similarly, the sensitivity varied for different compounds within the multi-component standard across all SESI-Orbitrap and -QTOF setups, yielding limits of detections from 3.1 ppb (for p-xylene) to 0.05 ppb (for 1,8-cineol). Routinely applying the standard system throughout several weeks, allowed us to monitor instrument stability and to identify technical outliers in exhaled breath measurements. Such routine deployment of standards would significantly improve data quality and comparability, which is especially important in longitudinal and multi-center studies. Furthermore, performance validation of the system demonstrated its suitability for reliable absolute quantification while it illustrated compound-dependent behavior for SESI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.