Monarch butterflies are best known for their spectacular annual migration from eastern North America to Mexico. Monarchs also occur in the North American states west of the Rocky Mountains, from where they fly shorter distances to the California Coast. Whether eastern and western North American monarchs form one genetic population or are genetically differentiated remains hotly debated, and resolution of this debate is essential to understand monarch migration patterns and to protect this iconic insect species. We studied the genetic structure of North American migratory monarch populations, as well as nonmigratory populations in Hawaii and New Zealand. Our results show that eastern and western migratory monarchs form one admixed population and that monarchs from Hawaii and New Zealand have genetically diverged from North American butterflies. These findings suggest that eastern and western monarch butterflies maintain their divergent migrations despite genetic mixing. The finding that eastern and western monarchs form one genetic population also suggests that the conservation of overwintering sites in Mexico is crucial for the protection of monarchs in both eastern and western North America.
The diversity of ascomycete laccase sequences was surveyed in a southeastern US salt marsh using a degenerate primer set designed around copper binding sites conserved in fungal laccases. This gene was targeted for diversity analysis because of its potential function in lignin degradation in the salt marsh ecosystem and because few studies have assessed functional gene diversity in natural fungal communities. Laccase sequences were amplified from genomic DNA extracted from 24 isolates (representing 10 ascomycete species) cultured from decaying blades of Spartina alterniflora, and from DNA extracted directly from the decaying blades. Among the ascomycete isolates, 21 yielded a PCR product of expected size (900 bp) that was tentatively identified as laccase based on sequence similarities to previously published laccase sequences from related organisms. Overall, 13 distinct sequence types, containing 39 distinct sequences, were identified among the isolates, with several species yielding multiple distinct laccase types. PCR amplifications from early and late decay blades of S. alterniflora yielded seven laccase types. Of these, five were composed of sequences >96% similar at the amino acid level to sequences from three cultured ascomycetes previously found to be dominant members of the fungal communities on decaying S. alterniflora blades. Two of the laccase types from the natural-decay clone library were novel and did not match any of the sequences obtained from the cultured ascomycetes. The 39 distinct sequences and 15 distinct laccase sequence types retrieved from the S. alterniflora decay system demonstrate high sequence diversity of this functional gene in a natural fungal community.
In the present study, we used the sand cat (Felis margarita) as a somatic cell donor to evaluate whether cryopreservation of donor cells alters viability and epigenetic events in donor cells and affects in vitro and in vivo developmental competence of derived embryos. In Experiment 1, flow cytometry analysis revealed that the percentage of necrosis and apoptosis in cells analyzed immediately after freezing/thawing (61 vs. 8.1%, respectively) was higher than that observed in frozen/thawed cells cultured for 18 h (6.9 vs. 3.3%, respectively) or 5 days (38 vs. 2.6%; respectively). The relative acetylation level of H3K9 was lower in frozen/thawed cells (5.4%) compared to that found in cultured cells (60.1%). In Experiment 2, embryos reconstructed with frozen/thawed cells had a lower cleavage rate (85%; day 2) than did embryos reconstructed with cultured cells (95%), while development to the blastocyst stage (day 8) was not affected by cell treatment (17.0% with frozen/thawed cells vs. 16.5% with cultured cells). In Experiment 3, pregnancy rates were similar between both cell treatments (32% with frozen/thawed cells vs. 30% with cultured cells), but the number of embryos that were implanted, and the number of fetuses that developed to term was lower for embryos reconstructed with frozen/thawed cells (1.2 and 0.3%, respectively) than those reconstructed with cultured cells (2.6 and 1.8%, respectively), while the number of fetuses reabsorbed by day 30 was higher (75%) for embryos reconstructed with frozen/thawed cells than those reconstructed with cultured cells (31%). A total of 11 kittens from cultured cells and three kittens from frozen/thawed cells were born between days 60 to 64 of gestation. Most kittens died within a few days after birth, although one kitten did survive for 2 months. In Experiment 4, POU5F1 mRNA expression was detected in 25% of blastocysts derived from frozen/thawed cells, whereas 88 and 87% of blastocysts derived from cultured cells and by in vitro fertilization, respectively, expressed POU5F1. We have shown that cell cryopreservation increased the incidence of necrosis and apoptosis and altered epigenetic events in donor cells. Consequently, the number of embryos that cleaved, implanted, and developed to term-gestation and POU5F1 expression in derived blastocysts indirectly was affected.
Somatic cell nuclear transfer (SCNT) offers the possibility of preserving endangered species. It is one of the few technologies that avoids the loss of genetic variation and provides the prospect of species continuance, rather than extinction. Nonetheless, there has been a debate over the use of SCNT for preserving endangered species because of abnormal nuclear reprogramming, low efficiency and the involvement of extra mitochondrial DNA (mtDNA) of a different species in live offspring produced by interspecies SCNT. Despite these limitations, live endangered cloned animals have been produced. In the present paper, we describe recent research on the production of cloned embryos derived by fusion of wild felid fibroblast cells with heterospecific domestic cat cytoplasts and their viability after transfer into domestic cat recipients. In addition, we discuss epigenetic events that take place in donor cells and felid cloned embryos and mtDNA inheritance in wild felid clones and their offspring.
Varroa destructor is an obligate ectoparasitic mite and the most important biotic threat currently facing honey bees (Apis mellifera). We used neutral microsatellites to analyze previously unreported fine scale population structure of V. destructor, a species characterized by extreme lack of genetic diversity owing to multiple bottleneck events, haplodiploidy, and primarily brother-sister matings. Our results surprisingly indicate that detectable hierarchical genetic variation exists between apiaries, between colonies within an apiary, and even within colonies. This finding of within-colony parasite diversity provides empirical evidence that the spread of V. destructor is not accomplished solely by vertical transmission but that horizontal transmission (natural or human-mediated) must occur regularly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.