Ecotones are responsive to environmental change and pave a path for succession as they move across the landscape. We investigated the biotic and abiotic filters to species establishment on opposite ends of a tidal marsh-forest ecotone that is moving inland in response to sea level rise. We transplanted four plant species common to the ecotone to the leading or trailing edge of the migrating ecotone, with and without caging to protect them from ungulate herbivores. We found that species exhibited an individualistic response to abiotic and biotic pressures in this ecotone; three species performed better at the leading edge of the ecotone in the coastal forest, whereas one performed better at the trailing edge in the marsh. Specifically, grass species Phragmites australis and Panicum virgatum grew more in the low light and low salinity conditions of the leading edge of the ecotone (forest), whereas the shrub Iva frutescens grew better in the high light, high salinity conditions of the trailing edge of the ecotone (marsh). Furthermore, of the four species, only P. australis was affected by the biotic pressure of herbivory by an introduced ungulate, Cervus nippon, which greatly reduced its biomass and survival at the leading edge (forest). P. australis is an aggressive invasive species and has been observed to dominate in the wake of migrating marsh-forest ecotones. Our findings detail the role of lower salinity stress to promote and herbivory pressure to inhibit the establishment of P. australis during shifts of this ecotone, and also highlight an interaction between two nonnative species, P. australis and C. nippon. Understanding migration of the marsh-forest ecotone and the factors controlling P. australis establishment are critical for marsh conservation in the face of sea level rise. More generally, our findings support the conclusion that the abiotic and biotic filters of a migrating ecotone shape the resulting community.
Experimental results from a multi-year exclosure study (2009–2015) demonstrate strong effects of geese on plant cover and species diversity in an urban, restored tidal freshwater wetland. Access by geese inhibited plant establishment and suppressed plant diversity, particularly of annual plant species. Our experimental results demonstrate that the protection of newly restored tidal freshwater wetlands from geese is a make-or-break management activity that will determine the composition and long-term persistence of vegetation at the site. The causal herbivore, in this case, was resident, non-migratory Canada geese (Branta canadensis), which have increased dramatically over the last several decades and had high population densities throughout the study period. These findings suggest that management activities to reduce the population sizes of non-migratory goose populations will support greater wetland plant diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.