(1) Background: Products, manufactured using additive manufacturing technologies (AM) are increasingly present on the market. The research was undertaken to determine the possibilities of increasing the use of AM technology in Polish manufacturing companies. The aim of the paper is to determinate the level of the AM technology use of Polish Metal and Automotive Manufacturing and the influence of AM technology use on the increase of manufacturing company’s competitiveness–in the context of Polish Manufacturing Companies. (2) Methods: This paper uses literature studies to determinate the AM technology used within the production processes in the automotive and metal industry companies (so called dimensions) and a questionnaire survey, which was carried out on a sample of 250 Polish Metal and Automotive Manufacturing Enterprises. (3) Results: The results were verified by a statistical analysis, using correlation coefficients. Based on the data obtained, it was determined that both metal and automotive Polish companies use, or have in their investment plans, the implementation of AM technology, due to the need to reduce production costs and increase speed and flexibility when responding to customer needs. Moreover, the relationship between applied additive manufacturing technologies and the effects of their use, in enterprises, was analysed. The novelty of our work is defining the dimensions of the AM technology use for our empirical research and determining the influence of AM technology use on the increase Polish manufacturing company’s competitiveness. (4) Conclusions: The possibilities of using the results of research in economic practice were demonstrated. We also highlighted the impracticality for managers to support the selection and implementation of AM technology in the context of obtaining possible benefits for a manufacturing company.
Nowadays, it is necessary to verify the accuracy of servicing work, undertaken by new employees, within a manufacturing company. A gap in the research has been observed in effective methods to automatically evaluate the work of a newly employed worker. The main purpose of the study is to build a new, deep learning model, in order to automatically assess the activity of the single worker. The proposed approach integrates the methods known as CNN, CNN + SVM, CNN + R-CNN, four new algorithms and a piece of work from a selected company, using this as an own-created dataset, in order to create a solution enabling assessment of the activity of single workers. Data were collected from an operational manufacturing cell without any guided or scripted work. The results reveal that the model developed is able to accurately detect the correctness of the work process. The model’s accuracy mostly exceeds current state-of-the-art methods for detecting work activities in manufacturing. The proposed two-stage approach, firstly, assigning the appropriate graphic instruction to a given employee’s activity using CNN and then using R-CNN to isolate the object from the reference frames, yields 94.01% and 73.15% accuracy of identification, respectively.
This paper presents a methodology for implementation of an ERP system in the area of production maintenance. The methodology is based on integration of monitoring maintenance events, manufacturing data registration and an employee motivation system.. The maintenance processes discussed in the paper encompass activities in the area of disaster recovery, overhauls, changeovers and special equipment production. This methodology requires implementation of an effective system of data registration and the design of a motivation system for maintenance staff based on the registered data. The models of the maintenance processes are proposed and the illustrative examples are given
(1) Background: Improving the management and effectiveness of employees’ learning processes within manufacturing companies has attracted a high level of attention in recent years, especially within the context of Industry 4.0. Convolutional Neural Networks with a Support Vector Machine (CNN-SVM) can be applied in this business field, in order to generate workplace procedures. To overcome the problem of usefully acquiring and sharing specialist knowledge, we use CNN-SVM to examine features from video material concerning each work activity for further comparison with the instruction picture’s features. (2) Methods: This paper uses literature studies and a selected workplace procedure: repairing a solid and using a fuel boiler as the benchmark dataset, which contains 20 s of training and a test video, in order to provide a reference model of features for a workplace procedure. In this model, the method used is also known as Convolutional Neural Networks with Support Vector Machine. This method effectively determines features for the further comparison and detection of objects. (3) Results: The innovative model for generating a workplace procedure, using CNN-SVM architecture, once built, can then be used to provide a learning process to the employees of manufacturing companies. The novelty of the proposed methodology is its architecture, which combines the acquisition of specialist knowledge and formalising and recording it in a useful form for new employees in the company. Moreover, three new algorithms were created: an algorithm to match features, an algorithm to detect each activity in the workplace procedure, and an algorithm to generate an activity scenario. (4) Conclusions: The efficiency of the proposed methodology can be demonstrated on a dataset comprising a collection of workplace procedures, such as the repair of the solid fuel boiler. We also highlighted the impracticality for managers of manufacturing companies to support learning processes in a company, resulting from a lack of resources to teach new employees.
The automated assessment and analysis of employee activity in a manufacturing enterprise, operating in accordance with the concept of Industry 4.0, is essential for a quick and precise diagnosis of work quality, especially in the process of training a new employee. In the case of industrial solutions, many approaches involving the recognition and detection of work activity are based on Convolutional Neural Networks (CNNs). Despite the wide use of CNNs, it is difficult to find solutions supporting the automated checking of work activities performed by trained employees. We propose a novel framework for the automatic generation of workplace instructions and real-time recognition of worker activities. The proposed method integrates CNN, CNN Support Vector Machine (SVM), CNN Region-Based CNN (Yolov3 Tiny) for recognizing and checking the completed work tasks. First, video recordings of the work process are analyzed and reference video frames corresponding to work activity stages are determined. Next, work-related features and objects are determined using CNN with SVM (achieving 94% accuracy) and Yolov3 Tiny network based on the characteristics of the reference frames. Additionally, matching matrix between the reference frames and the test frames using mean absolute error (MAE) as a measure of errors between paired observations was built. Finally, the practical usefulness of the proposed approach by applying the method for supporting the automatic training of new employees and checking the correctness of their work done on solid fuel boiler equipment in a manufacturing company was demonstrated. The developed information system can be integrated with other Industry 4.0 technologies introduced within an enterprise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.