Spent nuclear fuel from Finnish power plants is planned to be deposited deep in the crystalline bedrock in Olkiluoto, Finland. The bedrock and more specifically the elemental composition of ground water, which is composed of the fracture water and the matrix pore water, needs to be well characterized to assess the risks inherent to the long term safety of the site. To this end, it is valuable to investigate elemental composition of the matrix pore water since it tends to conserve hydrogeological signals for longer time spans compared to open fracture waters.In this study, the chloride concentration of matrix pore water in veined gneiss (VGN) and pegmatitic granite (PGR) samples were investigated. Chloride was out-diffused from the naturally saturated rock cores into deionized water. Chloride pore diffusion coefficients were derived by modelling the chloride breakthrough curves obtained from the out-diffusion experiments. Two component modelling gave best fit to the experimental results. There two diffusion coefficients were (9±2)×10-11 m2/s and (0.5±0.1)×10-11 m2/s for PGR and (2.5±0.5)×10-11 m2/s and (0.4±0.1)×10-11 m2/s for VGN. Porosity distribution and total porosities of the rock samples were studied with the C-14-PMMA autoradiography. Porosity for PGR was found to be 0.6 % with large mineral transecting fissures, and porosity for VGN was found to be 0.7 % with highly porous mineral clusters connected to each other via grain boundaries and intragranular pores. The findings here show that heterogeneity has to be taken into account in modelling to find better agreement with the experimental results. C-14-PMMA autoradiography results indicate dual-component behavior for diffusion in PGR and VGN which were used in the modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.