Simultaneous real-time control of multiple MHD instabilities is experimentally demonstrated in the TCV tokamak. Multiple sources of EC heating and current drive, injected through real-time controlled launchers, are used to stabilize 3/2 and 2/1 neoclassical tearing modes (NTMs) rapidly after their appearance. Control of the sawtooth instability using a new sawtooth-pacing technique is demonstrated, providing precise control of the time of appearance of the sawtooth crash. Efficient NTM preemption can then be performed by applying pulsed power on the mode rational surface at the time of the seed-island generating sawtooth crash. These three elements are combined into one integrated control system which can simultaneously control the sawtooth period, preempt the formation of NTMs and suppress these if they appear.
On the Tokamakà Configuration Variable (TCV), electron internal transport barriers (eITBs) can be formed during a gradual evolution from a centrally peaked to a hollow current profile while all external actuators are held constant. The formation occurs rapidly (<τ eE) and locally and, according to ASTRA modelling, is consistent with the appearance of a local minimum in the safety factor (q) profile. The eITB is sustained by non-inductively driven currents (including the off-axis bootstrap current) for many current redistribution times while the current in the tokamak transformer is held constant. The maximum duration is limited by the pulse length of the gyrotrons. The transformer coil can be used as a counter (or co-) current source with negligible accompanying input power. In established eITBs the performance can be enhanced (degraded) by altering solely the central current or q-profile. New experiments show that the same stationary eITB performance can be reached starting from discharges with centrally peaked current. A fine scan in surface voltage shows a smooth increase in performance and no sudden improvement with voltage despite the fact that q min must pass through several low-order rational values.
The period of individual type-I edge-localized modes (ELMs) in TCV H-mode plasmas is controlled by real-time controlled application of electron cyclotron (EC) power close to the plasma pedestal. An ELM pacing algorithm, closely related to sawtooth pacing (Goodman et al (2011 Phys. Rev. Lett. 106 245002)) has been implemented in the TCV control system. This algorithm switches the EC power to a low level after detecting an ELM, and subsequently increases the power to a higher level after a pre-set time interval, stimulating the advent of the next ELM. While the mean ELM period is observed to depend only on the mean power applied, ELM pacing is shown to significantly regularize the ELM period with respect to the case of continuously applied power. It is also shown that the ELM period can be changed from one ELM to the next on time scales shorter than the global energy confinement time. These results present a challenging benchmark to physics-based pedestal models and can point towards obtaining a deeper understanding of the physics of individual ELM cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.