Silymarin, a standardized extract of the milk thistle (Silybum marianum), has a long tradition as a herbal remedy, and was introduced as a hepatoprotective agent a few years ago. However, the therapeutic effects of silymarin remain undefined. Carbon tetrachloride (CCl4) is a xenobiotic used extensively to induce oxidative stress and is one of the most widely used hepatic toxins for experimental induction of liver fibrosis in the laboratory. In this study, we investigated the restoration of the CCl4-induced hepatic fibrosis by high dose of silymarin in rats. After treatment with oil (as normal group; n = 6) or CCl4 [as model (n = 7) and therapeutic (n = 7) groups] by intragastric delivery for 8 weeks for the induction of liver fibrosis, the rats in the normal and model group were administered orally normal saline four times a week for 3 weeks whilst the therapeutic group received silymarin (200 mg/kg). The histopathological changes were observed with Masson staining. The results showed that the restoration of the CCl4-induced damage of liver fibrosis in the therapeutic group was significantly increased as compared to that in the model group. Moreover, silymarin significantly decreased the elevation of aspartate aminotransferase (AST), alanine aminotransferase, and alkaline phosphatase in serum, and also reversed the altered expressions of alpha-smooth muscle actin in liver tissue. Therefore, these findings indicated that silymarin may have the potential to increase the resolution of the CCl4-induced liver fibrosis in rats.
Cross-organ sensitization between the uterus and the lower urinary tract (LUT) underlies the high concurrence of pelvic pain syndrome and LUT dysfunctions, and yet the role of gonadal steroids is still unknown. We tested the hypothesis that cross-organ sensitization on pelvic-urethra reflex activity caused by uterine capsaicin instillation is estrous cycle dependent. When compared with the baseline reflex activity (1.00 +/- 0.00 spikes/stimulation), uterine capsaicin instillation significantly increased reflex activity (45.42 +/- 9.13 spikes/stimulation, P < 0.01, n = 7) that was corroborated by an increase in phosphorylated NMDA NR2B (P < 0.05, n = 4) but not NR2A subunit (P > 0.05, n = 4) expression. Both intrauterine pretreatment with capsazepine (5.02 +/- 2.11 spikes/stimulation, P < 0.01, n = 7) and an intrathecal injection of AP5 (3.21 +/- 0.83 spikes/stimulation, P < 0.01, n = 7) abolished the capsaicin-induced cross-organ sensitization and the increment in the phosphorylated NR2B level (P < 0.05, n = 4). The degrees of the cross-organ sensitization increased in a dose-dependent manner with the concentration of instilled capsaicin from 100 to 300 microM in both the proestrus and metestrus stages, whereas they weakened when the concentrations were higher than 1,000 microM. Moreover, the cross-organ sensitization caused by the uterine capsaicin instillation increased significantly in the rats during the proestrus stage when compared with the metestrus stage (P < 0.01, n = 7). These results suggest that estrogen levels might modulate the cross-organ sensitization between the uterus and the urethra and underlie the high concurrence of pelvic pain syndrome and LUT dysfunctions.
The current study investigates whether the spinal pelvic nerve-to-external urethra sphincter (EUS) reflex potentiation can be induced by a mechanical stimulation and whether the glutamatergic mechanism is involved in yielding such a reflex potentiation. The external urethra sphincter electromyogram (EUSE) activity, evoked by a single or by repetitive pelvic nerve stimulation, in 30 anesthetized rats was recorded with/without bladder saline distension. Without saline distension (0 cmH(2)O), a single pulse nerve stimulation evoked a single action potential in the reflex activity, whereas repetitive pelvic stimulation and saline distension (6 approximately 20 cmH(2)O) both elicited a long-lasting reflex potentiation (20.05 +/- 3.21 and 75.01 +/- 9.87 spikes/stimulation, respectively). The saline distension-induced pelvic nerve-to-EUS reflex potentiation was abolished by D-2-amino-5-phosphonovalerate [APV; a glutamatergic N -methyl-D-aspartic acid (NMDA) receptor antagonist; 100 microM, 10 microl, 1.72 +/- 0.31 spikes/stimulation] and attenuated by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline [NBQX; a glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) receptor antagonist; 100 microM, 10 microl, 26.16 +/- 7.27 spikes/stimulation], but was not affected by bicuculline (a GABAergic antagonist; 100 microM, 10 microl, 53.62 +/- 15.54 spikes/stimulation). Intrathecal administration of glutamate (31.12 +/- 8.25 spikes/stimulation, 100 microM, 10 microl) and NMDA (26.25 +/- 4.12 spikes/stimulation, 100 microM, 10 microl) both induced a long-lasting pelvic nerve-to-EUS reflex potentiation without saline distension, which was similar to the findings observed from saline distension only. The duration of the contraction wave of the urethra was elongated by the saline distension-induced pelvic nerve-to-EUS reflex potentiation, whereas the peak pressure of the contraction wave was not affected. Our findings suggest that saline distension in the bladder elicits a pelvic nerve-to-EUS reflex potentiation and the glutamatergic mechanism contributes to the presence of such a reflex potentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.