This review article highlights the emergence of eclectic molecular design principles to realize remarkably strong electron deficient arylenediimide molecules, aspects of their stability and associated applications.
A facile synthesis of octabromoperylene-3,4,9,10-tetracarboxylic dianhydride (Br8-PDA) (1), its diimides (Br8-PDIs) (2a-e), and bis-, tris-, and tetra-amino substituted diimides (5a-c) with six, five, and four remaining substitutable Br atoms, respectively, is reported. Octabromination results in facile chemical/electrochemical reduction, radical anion formation, and red-shifted optical properties. For the first time, diverse halogen-bonding interactions were identified in the PDA/PDI, which along with the attractive electronic features enhance the electron-transport characteristics compared to the di-/tetra-brominated PDIs (3/4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.